Simplify the following expression:

[tex]\[ \frac{\left(\frac{1}{4}\right)^{15} \div \left(\frac{1}{4}\right)^5}{\left(\frac{1}{7}\right)^{10} \left(\frac{1}{4}\right)^5} \][/tex]



Answer :

Let's solve the given expression step by step:

[tex]\[ \frac{\left(\frac{1}{4}\right)^{15} \div \left(\frac{1}{4}\right)^5}{\left(\frac{1}{7}\right)^{10} \left(\frac{1}{4}\right)^5} \][/tex]

### Step 1: Simplify the Numerator

First, simplify the numerator [tex]\(\left(\frac{1}{4}\right)^{15} \div \left(\frac{1}{4}\right)^5\)[/tex]:

We can use the property of exponents [tex]\(\frac{a^m}{a^n} = a^{m-n}\)[/tex]:

[tex]\[ \left(\frac{1}{4}\right)^{15} \div \left(\frac{1}{4}\right)^5 = \left(\frac{1}{4}\right)^{15-5} = \left(\frac{1}{4}\right)^{10} \][/tex]

So the simplified numerator is:

[tex]\[ \left(\frac{1}{4}\right)^{10} \][/tex]

### Step 2: Simplify the Denominator

Next, simplify the denominator [tex]\(\left(\frac{1}{7}\right)^{10} \times \left(\frac{1}{4}\right)^5\)[/tex]:

Leave this as is since it is already in its simplest form.

### Step 3: Combine the Simplified Numerator and Denominator

We now need to express the whole expression as:

[tex]\[ \frac{\left(\frac{1}{4}\right)^{10}}{\left(\frac{1}{7}\right)^{10} \left(\frac{1}{4}\right)^5} \][/tex]

### Step 4: Simplify the Expression

We can rewrite the expression using the properties of exponents:

[tex]\[ \frac{\left(\frac{1}{4}\right)^{10}}{\left(\frac{1}{7}\right)^{10} \left(\frac{1}{4}\right)^5} = \frac{\left(\frac{1}{4}\right)^{10}}{\left(\frac{1}{4}\right)^5 \left(\frac{1}{7}\right)^{10}} \][/tex]

Using the property of exponents again, [tex]\(\frac{a^m}{a^n} = a^{m-n}\)[/tex]:

[tex]\[ \frac{\left(\frac{1}{4}\right)^{10}}{\left(\frac{1}{4}\right)^5} = \left(\frac{1}{4}\right)^{10-5} = \left(\frac{1}{4}\right)^{5} \][/tex]

So the expression now becomes:

[tex]\[ \frac{\left(\frac{1}{4}\right)^{5}}{\left(\frac{1}{7}\right)^{10}} \][/tex]

### Step 5: Express as a Single Fraction

[tex]\(\left(\frac{1}{4}\right)^{5}\)[/tex] and [tex]\(\left(\frac{1}{7}\right)^{10}\)[/tex] can be written as:

[tex]\[ \frac{\left(\frac{1}{4}\right)^{5}}{\left(\frac{1}{7}\right)^{10}} = \frac{1}{4^5} \times \frac{7^{10}}{1} \][/tex]

Combine these:

[tex]\[ \frac{7^{10}}{4^5} \][/tex]

### Step 6: Calculate the Final Result

To obtain the precise numerical values:

[tex]\[ 4^5 = 1024 \quad \text{and} \quad 7^{10} = 282475249 \][/tex]

So the expression becomes:

[tex]\[ \frac{282475249}{1024} \][/tex]

Dividing:

[tex]\[ \frac{282475249}{1024} \approx 275854.7353515626 \][/tex]

Therefore, the final result of the given expression is:

[tex]\[ \boxed{275854.7353515626} \][/tex]