Calculate the limit:
[tex]\[ \lim_{x \rightarrow 4} \frac{\sqrt{x}-\sqrt{4}}{x-4} \][/tex]

[tex]\[ \lim_{x \rightarrow 4} \square \][/tex]



Answer :

To evaluate the limit [tex]\(\lim_{x \rightarrow 4} \frac{\sqrt{x} - \sqrt{4}}{x - 4}\)[/tex], let's proceed through the solution step-by-step.

First, we notice that directly substituting [tex]\(x = 4\)[/tex] into the expression results in an indeterminate form [tex]\(\frac{0}{0}\)[/tex]. To resolve this, we can manipulate the expression to simplify the limit:

1. Recognize that [tex]\(\sqrt{4} = 2\)[/tex]. The original limit is:
[tex]\[ \lim_{x \rightarrow 4} \frac{\sqrt{x} - 2}{x - 4} \][/tex]

2. To simplify this expression, multiply the numerator and the denominator by the conjugate of the numerator. The conjugate of [tex]\(\sqrt{x} - 2\)[/tex] is [tex]\(\sqrt{x} + 2\)[/tex]. Thus, we have:
[tex]\[ \frac{\sqrt{x} - 2}{x - 4} \cdot \frac{\sqrt{x} + 2}{\sqrt{x} + 2} = \frac{(\sqrt{x} - 2)(\sqrt{x} + 2)}{(x - 4)(\sqrt{x} + 2)} \][/tex]

3. Use the property that [tex]\((a - b)(a + b) = a^2 - b^2\)[/tex] to simplify the numerator:
[tex]\[ (\sqrt{x} - 2)(\sqrt{x} + 2) = x - 4 \][/tex]

Therefore, our expression becomes:
[tex]\[ \frac{x - 4}{(x - 4)(\sqrt{x} + 2)} \][/tex]

4. We can now cancel out [tex]\(x - 4\)[/tex] in the numerator and the denominator, as long as [tex]\(x \neq 4\)[/tex]:
[tex]\[ \frac{1}{\sqrt{x} + 2} \][/tex]

5. Now we can directly substitute [tex]\(x = 4\)[/tex] into the simplified expression:
[tex]\[ \frac{1}{\sqrt{4} + 2} = \frac{1}{2 + 2} = \frac{1}{4} \][/tex]

Hence, the limit is:
[tex]\[ \lim_{x \rightarrow 4} \frac{\sqrt{x} - \sqrt{4}}{x - 4} = \frac{1}{4} \][/tex]