1. If [tex]\left|\begin{array}{ll}a & b \\ c & d\end{array}\right| = 5[/tex], then find [tex]\left|\begin{array}{ll}3a & 3b \\ 3c & 3d\end{array}\right|[/tex].

[tex]\left|\begin{array}{ll}a & b \\ c & d\end{array}\right| = 5[/tex]

[tex]\left|\begin{array}{ll}3a & 3b \\ 3c & 3d\end{array}\right|[/tex]

(Note: The text in parentheses was in Gujarati, which does not appear to be related to the question. It has been removed to focus on the main problem.)



Answer :

To solve the given problem, let's break down the steps to find the determinant of the matrix [tex]\( \left|\begin{array}{cc} 3a & 3b \\ 3c & 3d \end{array}\right| \)[/tex] given that [tex]\( \left|\begin{array}{cc} a & b \\ c & d \end{array}\right| = 5 \)[/tex].

### Step-by-Step Solution

1. Understanding Determinants and Scalar Multiplication:

The determinant of a [tex]\(2 \times 2\)[/tex] matrix [tex]\( \left|\begin{array}{cc} a & b \\ c & d \end{array}\right| \)[/tex] is given by the formula:
[tex]\[ ad - bc \][/tex]

2. Given Information:

We are given:
[tex]\[ \left|\begin{array}{cc} a & b \\ c & d \end{array}\right| = 5 \][/tex]

3. Effect of Scalar Multiplication on Determinants:

When each element of a [tex]\( n \times n \)[/tex] matrix is multiplied by a scalar [tex]\( k \)[/tex], the determinant of the new matrix is [tex]\( k^n \)[/tex] times the determinant of the original matrix. For a [tex]\(2 \times 2\)[/tex] matrix, this can be written as follows:
[tex]\[ \left|\begin{array}{cc} ka & kb \\ kc & kd \end{array}\right| = k^2 \left|\begin{array}{cc} a & b \\ c & d \end{array}\right| \][/tex]
In our problem, each element of the matrix is multiplied by 3, so [tex]\( k = 3 \)[/tex] and [tex]\( n = 2 \)[/tex].

4. Calculating the Determinant of the New Matrix:

Using the above property:
[tex]\[ \left|\begin{array}{cc} 3a & 3b \\ 3c & 3d \end{array}\right| = 3^2 \left|\begin{array}{cc} a & b \\ c & d \end{array}\right| \][/tex]

5. Substitute the Given Determinant:

Given [tex]\( \left|\begin{array}{cc} a & b \\ c & d \end{array}\right| = 5 \)[/tex]:
[tex]\[ \left|\begin{array}{cc} 3a & 3b \\ 3c & 3d \end{array}\right| = 3^2 \cdot 5 \][/tex]
[tex]\[ \left|\begin{array}{cc} 3a & 3b \\ 3c & 3d \end{array}\right| = 9 \cdot 5 \][/tex]
[tex]\[ \left|\begin{array}{cc} 3a & 3b \\ 3c & 3d \end{array}\right| = 45 \][/tex]

### Conclusion

The determinant of the matrix [tex]\( \left|\begin{array}{cc} 3a & 3b \\ 3c & 3d \end{array}\right| \)[/tex] is [tex]\( 45 \)[/tex].

Thus, the final answer is:
[tex]\[ 45 \][/tex]