Which represents the solution set of the inequality [tex]$5x - 9 \leq 21$[/tex]?

A. [tex]$x \leq \frac{12}{5}$[/tex]
B. [tex][tex]$x \geq \frac{12}{5}$[/tex][/tex]
C. [tex]$x \geq 6$[/tex]
D. [tex]$x \leq 6$[/tex]



Answer :

To solve the inequality [tex]\(5x - 9 \leq 21\)[/tex], let's follow these step-by-step instructions:

1. Start with the given inequality:
[tex]\[ 5x - 9 \leq 21 \][/tex]

2. Isolate the term with the variable [tex]\( x \)[/tex]:
First, add 9 to both sides of the inequality to get rid of the constant term on the left side:
[tex]\[ 5x - 9 + 9 \leq 21 + 9 \][/tex]
Simplifying, we obtain:
[tex]\[ 5x \leq 30 \][/tex]

3. Solve for [tex]\( x \)[/tex]:
Next, divide both sides of the inequality by 5 to solve for [tex]\( x \)[/tex]:
[tex]\[ \frac{5x}{5} \leq \frac{30}{5} \][/tex]
This simplifies to:
[tex]\[ x \leq 6 \][/tex]

Therefore, the solution set of the inequality [tex]\(5x - 9 \leq 21\)[/tex] is:
[tex]\[ x \leq 6 \][/tex]

To summarize, the correct representation of the solution set is:
[tex]\[ x \leq 6 \][/tex]

So, the answer is:
[tex]\[ \boxed{x \leq 6} \][/tex]