Answer :
To find the vertices of [tex]\( \triangle ABC \)[/tex] given the vertices of the reflected triangle [tex]\( \triangle A'B'C' \)[/tex] over the line [tex]\( y = -x \)[/tex], we need to use the properties of reflections.
When a point [tex]\((x, y)\)[/tex] is reflected over the line [tex]\( y = -x \)[/tex], the coordinates transform to [tex]\((-y, -x)\)[/tex]. We are given the vertices of [tex]\( \triangle A'B'C' \)[/tex] as:
- [tex]\( A'(-1, 1) \)[/tex]
- [tex]\( B'(-2, -1) \)[/tex]
- [tex]\( C'(-1, 0) \)[/tex]
We need to determine the coordinates of the original vertices [tex]\( A, B, \)[/tex] and [tex]\( C \)[/tex] by reflecting the given coordinates back over the line [tex]\( y = -x \)[/tex].
1. Reflecting [tex]\( A'(-1, 1) \)[/tex]:
- Original point [tex]\( A \)[/tex] becomes [tex]\((-1, 1) \rightarrow (1, -1)\)[/tex]
2. Reflecting [tex]\( B'(-2, -1) \)[/tex]:
- Original point [tex]\( B \)[/tex] becomes [tex]\((-2, -1) \rightarrow (1, 2)\)[/tex]
3. Reflecting [tex]\( C'(-1, 0) \)[/tex]:
- Original point [tex]\( C \)[/tex] becomes [tex]\((-1, 0) \rightarrow (0, 1)\)[/tex]
Thus, the vertices of [tex]\( \triangle ABC \)[/tex] are:
- [tex]\( A(1, -1) \)[/tex]
- [tex]\( B(1, 2) \)[/tex]
- [tex]\( C(0, 1) \)[/tex]
The correct set of vertices is given by option:
B. [tex]\( A(-1,1), B(1,2), C(0,1) \)[/tex]
When a point [tex]\((x, y)\)[/tex] is reflected over the line [tex]\( y = -x \)[/tex], the coordinates transform to [tex]\((-y, -x)\)[/tex]. We are given the vertices of [tex]\( \triangle A'B'C' \)[/tex] as:
- [tex]\( A'(-1, 1) \)[/tex]
- [tex]\( B'(-2, -1) \)[/tex]
- [tex]\( C'(-1, 0) \)[/tex]
We need to determine the coordinates of the original vertices [tex]\( A, B, \)[/tex] and [tex]\( C \)[/tex] by reflecting the given coordinates back over the line [tex]\( y = -x \)[/tex].
1. Reflecting [tex]\( A'(-1, 1) \)[/tex]:
- Original point [tex]\( A \)[/tex] becomes [tex]\((-1, 1) \rightarrow (1, -1)\)[/tex]
2. Reflecting [tex]\( B'(-2, -1) \)[/tex]:
- Original point [tex]\( B \)[/tex] becomes [tex]\((-2, -1) \rightarrow (1, 2)\)[/tex]
3. Reflecting [tex]\( C'(-1, 0) \)[/tex]:
- Original point [tex]\( C \)[/tex] becomes [tex]\((-1, 0) \rightarrow (0, 1)\)[/tex]
Thus, the vertices of [tex]\( \triangle ABC \)[/tex] are:
- [tex]\( A(1, -1) \)[/tex]
- [tex]\( B(1, 2) \)[/tex]
- [tex]\( C(0, 1) \)[/tex]
The correct set of vertices is given by option:
B. [tex]\( A(-1,1), B(1,2), C(0,1) \)[/tex]