Consider continuous functions [tex]\( f \)[/tex] and [tex]\( g \)[/tex]. Then complete the statement.

[tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $f(x)$ \\
\hline
-1 & -4 \\
\hline
0 & -2 \\
\hline
3 & 0 \\
\hline
8 & 2 \\
\hline
15 & 4 \\
\hline
24 & 6 \\
\hline
\end{tabular}
\][/tex]

Function [tex]\( g \)[/tex] is the sum of 2 and the cube root of the sum of three times [tex]\( x \)[/tex] and 1.

Select the correct answer from each drop-down:

The [tex]\( x \)[/tex]-intercept of function [tex]\( f \)[/tex] is [tex]\(\square\)[/tex] the [tex]\( x \)[/tex]-intercept of function [tex]\( g \)[/tex].



Answer :

To determine the [tex]\(x\)[/tex]-intercepts of the functions [tex]\(f\)[/tex] and [tex]\(g\)[/tex], let's go through the steps systematically:

### Step 1: Finding the [tex]\(x\)[/tex]-intercept of the function [tex]\(f\)[/tex]

Given the table of values for [tex]\(f\)[/tex]:

[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -1 & -4 \\ \hline 0 & -2 \\ \hline 3 & 0 \\ \hline 8 & 2 \\ \hline 15 & 4 \\ \hline 24 & 6 \\ \hline \end{array} \][/tex]

The [tex]\(x\)[/tex]-intercept of [tex]\(f\)[/tex] is the value of [tex]\(x\)[/tex] for which [tex]\(f(x) = 0\)[/tex]. From the table, we see that when [tex]\(x = 3\)[/tex], [tex]\(f(x) = 0\)[/tex]. Thus, the [tex]\(x\)[/tex]-intercept of [tex]\(f\)[/tex] is 3.

### Step 2: Finding the [tex]\(x\)[/tex]-intercept of the function [tex]\(g\)[/tex]

The function [tex]\(g\)[/tex] is given by:

[tex]\[ g(x) = 2 + \left(3x + 1\right)^{\frac{1}{3}} \][/tex]

To find the [tex]\(x\)[/tex]-intercept, set [tex]\(g(x) = 0\)[/tex]:

[tex]\[ 0 = 2 + \left(3x + 1\right)^{\frac{1}{3}} \][/tex]

Subtract 2 from both sides:

[tex]\[ -2 = \left(3x + 1\right)^{\frac{1}{3}} \][/tex]

Cube both sides to eliminate the cube root:

[tex]\[ (-2)^3 = 3x + 1 \][/tex]

Calculate [tex]\((-2)^3\)[/tex]:

[tex]\[ -8 = 3x + 1 \][/tex]

Subtract 1 from both sides:

[tex]\[ -9 = 3x \][/tex]

Solve for [tex]\(x\)[/tex]:

[tex]\[ x = \frac{-9}{3} \][/tex]
[tex]\[ x = -3 \][/tex]

Thus, the [tex]\(x\)[/tex]-intercept of [tex]\(g\)[/tex] is -3.

### Conclusion

The [tex]\(x\)[/tex]-intercept of function [tex]\(f\)[/tex] is 3, and the [tex]\(x\)[/tex]-intercept of function [tex]\(g\)[/tex] is -3. Therefore, the correct statement is:

The [tex]\(x\)[/tex]-intercept of function [tex]\(f\)[/tex] is [tex]\(\boxed{3}\)[/tex], and the [tex]\(x\)[/tex]-intercept of function [tex]\(g\)[/tex] is [tex]\(\boxed{-3}\)[/tex].