[tex]$
\begin{array}{l}
f(x) = x^2 + 1 \\
g(x) = 5 - x \\
(f + g)(x) = f(x) + g(x)
\end{array}
$[/tex]

Which of the following represents [tex]\((f + g)(x)\)[/tex]?

A. [tex]$x^2 + x - 4$[/tex]

B. [tex]$x^2 + x + 4$[/tex]

C. [tex]$x^2 - x + 6$[/tex]

D. [tex]$x^2 + x + 6$[/tex]



Answer :

To find the combined function [tex]\((f+g)(x)\)[/tex] given [tex]\(f(x) = x^2 + 1\)[/tex] and [tex]\(g(x) = 5 - x\)[/tex], we need to sum the values of [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex]. Let's break this down step-by-step:

1. Write down the functions:
- [tex]\( f(x) = x^2 + 1 \)[/tex]
- [tex]\( g(x) = 5 - x \)[/tex]

2. Determine the combined function (f+g)(x):
[tex]\[ (f+g)(x) = f(x) + g(x) \][/tex]

3. Substitute the given functions into the combined function:
[tex]\[ (f+g)(x) = (x^2 + 1) + (5 - x) \][/tex]

4. Combine like terms:
[tex]\[ (f+g)(x) = x^2 + 1 + 5 - x \][/tex]
[tex]\[ (f+g)(x) = x^2 - x + 6 \][/tex]

Thus, the function [tex]\((f+g)(x)\)[/tex] is:
[tex]\[ x^2 - x + 6 \][/tex]

The correct answer from the given options is:

[tex]\[ x^2 - x + 6 \][/tex]

So, the answer is:

[tex]\[ x^2 - x + 6 \][/tex]