Which of the following is the simplified form of [tex]\sqrt[7]{x} \cdot \sqrt[7]{x} \cdot \sqrt[7]{x}[/tex]?

A. [tex]x^{\frac{3}{7}}[/tex]
B. [tex]x^{\frac{1}{7}}[/tex]
C. [tex]x^{\frac{3}{21}}[/tex]
D. [tex]\sqrt[21]{x}[/tex]



Answer :

To simplify the expression [tex]\(\sqrt[7]{x} \cdot \sqrt[7]{x} \cdot \sqrt[7]{x}\)[/tex], we start by using the property of exponents involving fractional powers.

First, recall that [tex]\(\sqrt[7]{x}\)[/tex] can be written as [tex]\(x^{\frac{1}{7}}\)[/tex]. Therefore, the given expression can be rewritten with exponents:

[tex]\[ \sqrt[7]{x} \cdot \sqrt[7]{x} \cdot \sqrt[7]{x} = x^{\frac{1}{7}} \cdot x^{\frac{1}{7}} \cdot x^{\frac{1}{7}} \][/tex]

Next, we use the property of exponents that states [tex]\(a^m \cdot a^n = a^{m+n}\)[/tex]. Applying this property, we combine the exponents:

[tex]\[ x^{\frac{1}{7}} \cdot x^{\frac{1}{7}} \cdot x^{\frac{1}{7}} = x^{\frac{1}{7} + \frac{1}{7} + \frac{1}{7}} \][/tex]

Add the exponents together:

[tex]\[ \frac{1}{7} + \frac{1}{7} + \frac{1}{7} = \frac{3}{7} \][/tex]

So the simplified form of the expression is:

[tex]\[ x^{\frac{3}{7}} \][/tex]

Therefore, the correct choice is:

[tex]\[ x^{\frac{3}{7}} \][/tex]

Thus, the simplified form of [tex]\(\sqrt[7]{x} \cdot \sqrt[7]{x} \cdot \sqrt[7]{x}\)[/tex] is indeed [tex]\(x^{\frac{3}{7}}\)[/tex]. This corresponds to the first choice in the provided list.