Determine whether each table of values represents an even function, an odd function, or neither. Select the correct words in the table.

\begin{tabular}{|c|c|c|c|c|c|}
\hline
[tex]$x$[/tex] & -4 & -2 & 0 & 2 & 4 \\
\hline
[tex]$f(x)$[/tex] & 8 & 1 & 0 & -1 & -8 \\
\hline
\end{tabular}

- even
- odd
- neither

\begin{tabular}{|c|c|c|c|c|c|}
\hline
[tex]$x$[/tex] & -4 & -2 & 0 & 2 & 4 \\
\hline
[tex]$g(x)$[/tex] & -4 & 2 & 4 & 2 & -4 \\
\hline
\end{tabular}

- even
- odd
- neither

\begin{tabular}{|c|c|c|c|c|c|}
\hline
[tex]$x$[/tex] & -2 & -1 & 0 & 1 & 2 \\
\hline
[tex]$j(x)$[/tex] & 2 & -4 & -6 & -4 & 2 \\
\hline
\end{tabular}

- even
- odd
- neither

\begin{tabular}{|c|c|c|c|c|c|}
\hline
[tex]$x$[/tex] & -4 & -2 & 0 & 2 & 4 \\
\hline
[tex]$k(x)$[/tex] & 9 & 4 & 1 & 0 & 1 \\
\hline
\end{tabular}

- even
- odd
- neither



Answer :

Let's analyze if each given table of values represents an even function, an odd function, or neither.

1. Analysis of [tex]\( f(x) \)[/tex]:

[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & -4 & -2 & 0 & 2 & 4 \\ \hline f(x) & 8 & 1 & 0 & -1 & -8 \\ \hline \end{array} \][/tex]

To determine if [tex]\( f(x) \)[/tex] is even, odd, or neither, we need to check the properties:

- Even Function: [tex]\( f(x) = f(-x) \)[/tex]
- Odd Function: [tex]\( f(x) = -f(-x) \)[/tex]

Let’s check:

- [tex]\( f(4) = -8 \)[/tex] and [tex]\( f(-4) = 8 \)[/tex] → [tex]\( f(4) = -f(-4) \)[/tex]
- [tex]\( f(2) = -1 \)[/tex] and [tex]\( f(-2) = 1 \)[/tex] → [tex]\( f(2) = -f(-2) \)[/tex]
- [tex]\( f(0) = 0 \)[/tex]

Since [tex]\( f(x) = -f(-x) \)[/tex] for all values, [tex]\( f(x) \)[/tex] is an odd function.

2. Analysis of [tex]\( g(x) \)[/tex]:

[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & -4 & -2 & 0 & 2 & 4 \\ \hline g(x) & -4 & 2 & 4 & 2 & -4 \\ \hline \end{array} \][/tex]

Let’s check:

- [tex]\( g(4) = -4 \)[/tex] and [tex]\( g(-4) = -4 \)[/tex] → [tex]\( g(4) = g(-4) \)[/tex]
- [tex]\( g(2) = 2 \)[/tex] and [tex]\( g(-2) = 2 \)[/tex] → [tex]\( g(2) = g(-2) \)[/tex]
- [tex]\( g(0) = 4 \)[/tex]

Since [tex]\( g(x) = g(-x) \)[/tex] for all values, [tex]\( g(x) \)[/tex] is an even function.

3. Analysis of [tex]\( j(x) \)[/tex]:

[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & -2 & -1 & 0 & 1 & 2 \\ \hline j(x) & 2 & -4 & -6 & -4 & 2 \\ \hline \end{array} \][/tex]

Let’s check:

- [tex]\( j(2) = 2 \)[/tex] and [tex]\( j(-2) = 2 \)[/tex] → [tex]\( j(2) = j(-2) \)[/tex]
- [tex]\( j(1) = -4 \)[/tex] and [tex]\( j(-1) = -4 \)[/tex] → [tex]\( j(1) = j(-1) \)[/tex]
- [tex]\( j(0) = -6 \)[/tex]

Since [tex]\( j(x) = j(-x) \)[/tex] for all values, [tex]\( j(x) \)[/tex] is an even function.

4. Analysis of [tex]\( k(x) \)[/tex]:

[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & -4 & -2 & 0 & 2 & 4 \\ \hline k(x) & 9 & 4 & 1 & 0 & 1 \\ \hline \end{array} \][/tex]

Let’s check:

- [tex]\( k(4) = 1 \)[/tex] and [tex]\( k(-4) = 9 \)[/tex] → [tex]\( k(4) \neq k(-4) \)[/tex] and [tex]\( k(4) \neq -k(-4) \)[/tex]
- [tex]\( k(2) = 0 \)[/tex] and [tex]\( k(-2) = 4 \)[/tex] → [tex]\( k(2) \neq k(-2) \)[/tex] and [tex]\( k(2) \neq -k(-2) \)[/tex]
- [tex]\( k(0) = 1 \)[/tex]

Since neither [tex]\( k(x) = k(-x) \)[/tex] nor [tex]\( k(x) = -k(-x) \)[/tex] is true for all values, [tex]\( k(x) \)[/tex] is neither an even function nor an odd function.

Summary:

- [tex]\( f(x) \)[/tex] is odd.
- [tex]\( g(x) \)[/tex] is even.
- [tex]\( j(x) \)[/tex] is even.
- [tex]\( k(x) \)[/tex] is neither.

So, the table should be filled as follows:

[tex]\[ \begin{tabular}{|c|c|c|c|c|c|} \hline x & -4 & -2 & 0 & 2 & 4 \\ \hline f(x) & 8 & 1 & 0 & -1 & -8 & \text{odd} \\ \hline \end{tabular} \][/tex]

[tex]\[ \begin{tabular}{|c|c|c|c|c|c|} \hline x & -4 & -2 & 0 & 2 & 4 \\ \hline g(x) & -4 & 2 & 4 & 2 & -4 & \text{even} \\ \hline \end{tabular} \][/tex]

[tex]\[ \begin{tabular}{|c|c|c|c|c|c|} \hline x & -2 & -1 & 0 & 1 & 2 \\ \hline j(x) & 2 & -4 & -6 & -4 & 2 & \text{even} \\ \hline \end{tabular} \][/tex]

[tex]\[ \begin{tabular}{|c|c|c|c|c|c|} \hline x & -4 & -2 & 0 & 2 & 4 \\ \hline k(x) & 9 & 4 & 1 & 0 & 1 & \text{neither} \\ \hline \end{tabular} \][/tex]