Answer :
To determine the equivalent expression for [tex]\(\left(125 x^4 y^{\frac{2}{2}}\right)^{\frac{1}{3}} \div (x y)^{\frac{1}{2}}\)[/tex], we follow a step-by-step simplification:
1. Start with the given expression:
[tex]\[ \left(125 x^4 y^{\frac{2}{2}}\right)^{\frac{1}{3}} \div (x y)^{\frac{1}{2}} \][/tex]
2. Simplify the exponent of [tex]\(y\)[/tex] in the numerator:
[tex]\[ y^{\frac{2}{2}} = y \][/tex]
So the expression becomes:
[tex]\[ \left(125 x^4 y\right)^{\frac{1}{3}} \div (x y)^{\frac{1}{2}} \][/tex]
3. Distribute the exponent in the numerator:
[tex]\[ \left(125\right)^{\frac{1}{3}} \left(x^4\right)^{\frac{1}{3}} \left(y\right)^{\frac{1}{3}} \][/tex]
4. Calculate the individual components:
[tex]\[ 125^{\frac{1}{3}} = 5 \][/tex]
[tex]\[ (x^4)^{\frac{1}{3}} = x^{\frac{4}{3}} \][/tex]
[tex]\[ y^{\frac{1}{3}} \][/tex]
So, the numerator becomes:
[tex]\[ 5 x^{\frac{4}{3}} y^{\frac{1}{3}} \][/tex]
5. Simplify the denominator:
[tex]\[ (x y)^{\frac{1}{2}} = x^{\frac{1}{2}} y^{\frac{1}{2}} \][/tex]
6. Combine the numerator and the denominator:
[tex]\[ \frac{5 x^{\frac{4}{3}} y^{\frac{1}{3}}}{x^{\frac{1}{2}} y^{\frac{1}{2}}} \][/tex]
7. Subtract the exponents of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] in the numerator and the denominator:
[tex]\[ x^{\frac{4}{3} - \frac{1}{2}} = x^{\frac{4}{3} - \frac{1}{2}} = x^{\frac{8}{6} - \frac{3}{6}} = x^{\frac{5}{6}} \][/tex]
[tex]\[ y^{\frac{1}{3} - \frac{1}{2}} = y^{\frac{1}{3} - \frac{1}{2}} = y^{\frac{2}{6} - \frac{3}{6}} = y^{-\frac{1}{6}} \][/tex]
8. Hence, the simplified expression is:
[tex]\[ 5 x^{\frac{5}{6}} y^{-\frac{1}{6}} \][/tex]
Since [tex]\(y^{-\frac{1}{6}}\)[/tex] means [tex]\( \frac{1}{y^{\frac{1}{6}}}\)[/tex], the final result simplifies the expression to:
[tex]\[ 5 x^{\frac{5}{6}} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{5 x^{\frac{5}{6}}} \][/tex]
1. Start with the given expression:
[tex]\[ \left(125 x^4 y^{\frac{2}{2}}\right)^{\frac{1}{3}} \div (x y)^{\frac{1}{2}} \][/tex]
2. Simplify the exponent of [tex]\(y\)[/tex] in the numerator:
[tex]\[ y^{\frac{2}{2}} = y \][/tex]
So the expression becomes:
[tex]\[ \left(125 x^4 y\right)^{\frac{1}{3}} \div (x y)^{\frac{1}{2}} \][/tex]
3. Distribute the exponent in the numerator:
[tex]\[ \left(125\right)^{\frac{1}{3}} \left(x^4\right)^{\frac{1}{3}} \left(y\right)^{\frac{1}{3}} \][/tex]
4. Calculate the individual components:
[tex]\[ 125^{\frac{1}{3}} = 5 \][/tex]
[tex]\[ (x^4)^{\frac{1}{3}} = x^{\frac{4}{3}} \][/tex]
[tex]\[ y^{\frac{1}{3}} \][/tex]
So, the numerator becomes:
[tex]\[ 5 x^{\frac{4}{3}} y^{\frac{1}{3}} \][/tex]
5. Simplify the denominator:
[tex]\[ (x y)^{\frac{1}{2}} = x^{\frac{1}{2}} y^{\frac{1}{2}} \][/tex]
6. Combine the numerator and the denominator:
[tex]\[ \frac{5 x^{\frac{4}{3}} y^{\frac{1}{3}}}{x^{\frac{1}{2}} y^{\frac{1}{2}}} \][/tex]
7. Subtract the exponents of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] in the numerator and the denominator:
[tex]\[ x^{\frac{4}{3} - \frac{1}{2}} = x^{\frac{4}{3} - \frac{1}{2}} = x^{\frac{8}{6} - \frac{3}{6}} = x^{\frac{5}{6}} \][/tex]
[tex]\[ y^{\frac{1}{3} - \frac{1}{2}} = y^{\frac{1}{3} - \frac{1}{2}} = y^{\frac{2}{6} - \frac{3}{6}} = y^{-\frac{1}{6}} \][/tex]
8. Hence, the simplified expression is:
[tex]\[ 5 x^{\frac{5}{6}} y^{-\frac{1}{6}} \][/tex]
Since [tex]\(y^{-\frac{1}{6}}\)[/tex] means [tex]\( \frac{1}{y^{\frac{1}{6}}}\)[/tex], the final result simplifies the expression to:
[tex]\[ 5 x^{\frac{5}{6}} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{5 x^{\frac{5}{6}}} \][/tex]