Select the correct answer.

If [tex]x[/tex] and [tex]y[/tex] are positive real numbers, which expression is equivalent to the expression below?

[tex]
\left(125 x^4 y^{\frac{2}{2}}\right)^{\frac{1}{3}} \div (x y)^{\frac{1}{2}}
[/tex]

A. [tex]5 x^{\frac{11}{6}}[/tex]
B. [tex]5 x^{\frac{7}{2}} y[/tex]
C. [tex]5 x^{\frac{5}{6}} y[/tex]
D. [tex]5 x^{\frac{5}{6}}[/tex]



Answer :

To determine the equivalent expression for [tex]\(\left(125 x^4 y^{\frac{2}{2}}\right)^{\frac{1}{3}} \div (x y)^{\frac{1}{2}}\)[/tex], we follow a step-by-step simplification:

1. Start with the given expression:
[tex]\[ \left(125 x^4 y^{\frac{2}{2}}\right)^{\frac{1}{3}} \div (x y)^{\frac{1}{2}} \][/tex]

2. Simplify the exponent of [tex]\(y\)[/tex] in the numerator:
[tex]\[ y^{\frac{2}{2}} = y \][/tex]
So the expression becomes:
[tex]\[ \left(125 x^4 y\right)^{\frac{1}{3}} \div (x y)^{\frac{1}{2}} \][/tex]

3. Distribute the exponent in the numerator:
[tex]\[ \left(125\right)^{\frac{1}{3}} \left(x^4\right)^{\frac{1}{3}} \left(y\right)^{\frac{1}{3}} \][/tex]

4. Calculate the individual components:
[tex]\[ 125^{\frac{1}{3}} = 5 \][/tex]
[tex]\[ (x^4)^{\frac{1}{3}} = x^{\frac{4}{3}} \][/tex]
[tex]\[ y^{\frac{1}{3}} \][/tex]

So, the numerator becomes:
[tex]\[ 5 x^{\frac{4}{3}} y^{\frac{1}{3}} \][/tex]

5. Simplify the denominator:
[tex]\[ (x y)^{\frac{1}{2}} = x^{\frac{1}{2}} y^{\frac{1}{2}} \][/tex]

6. Combine the numerator and the denominator:
[tex]\[ \frac{5 x^{\frac{4}{3}} y^{\frac{1}{3}}}{x^{\frac{1}{2}} y^{\frac{1}{2}}} \][/tex]

7. Subtract the exponents of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] in the numerator and the denominator:
[tex]\[ x^{\frac{4}{3} - \frac{1}{2}} = x^{\frac{4}{3} - \frac{1}{2}} = x^{\frac{8}{6} - \frac{3}{6}} = x^{\frac{5}{6}} \][/tex]
[tex]\[ y^{\frac{1}{3} - \frac{1}{2}} = y^{\frac{1}{3} - \frac{1}{2}} = y^{\frac{2}{6} - \frac{3}{6}} = y^{-\frac{1}{6}} \][/tex]

8. Hence, the simplified expression is:
[tex]\[ 5 x^{\frac{5}{6}} y^{-\frac{1}{6}} \][/tex]

Since [tex]\(y^{-\frac{1}{6}}\)[/tex] means [tex]\( \frac{1}{y^{\frac{1}{6}}}\)[/tex], the final result simplifies the expression to:

[tex]\[ 5 x^{\frac{5}{6}} \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{5 x^{\frac{5}{6}}} \][/tex]