If [tex]$f(x) = x^4 - x^3 + x^2$[/tex] and [tex]$g(x) = -x^2$[/tex], where [tex][tex]$x \neq 0$[/tex][/tex], what is [tex]$(f / g)(x)$[/tex]?

A. [tex]x^2 - x + 1[/tex]

B. [tex]x^2 + x + 1[/tex]

C. [tex]-x^2 + x - 1[/tex]

D. [tex]-x^2 - x - 1[/tex]



Answer :

To solve the problem of finding [tex]\((f / g)(x)\)[/tex] given the functions [tex]\(f(x) = x^4 - x^3 + x^2\)[/tex] and [tex]\(g(x) = -x^2\)[/tex], where [tex]\(x \neq 0\)[/tex], we need to divide [tex]\(f(x)\)[/tex] by [tex]\(g(x)\)[/tex].

Here’s the step-by-step solution:

1. Write the quotient [tex]\((f / g)(x)\)[/tex]: The goal is to divide the function [tex]\(f(x)\)[/tex] by the function [tex]\(g(x)\)[/tex].
[tex]\[ (f / g)(x) = \frac{f(x)}{g(x)} \][/tex]

2. Substitute the given functions: Substitute [tex]\(f(x) = x^4 - x^3 + x^2\)[/tex] and [tex]\(g(x) = -x^2\)[/tex] into the quotient.
[tex]\[ (f / g)(x) = \frac{x^4 - x^3 + x^2}{-x^2} \][/tex]

3. Simplify the expression: Divide each term in the numerator [tex]\(x^4 - x^3 + x^2\)[/tex] by the denominator [tex]\(-x^2\)[/tex].

- Divide [tex]\(x^4\)[/tex] by [tex]\(-x^2\)[/tex]:
[tex]\[ \frac{x^4}{-x^2} = -x^2 \][/tex]

- Divide [tex]\(x^3\)[/tex] by [tex]\(-x^2\)[/tex]:
[tex]\[ \frac{x^3}{-x^2} = -x \][/tex]

- Divide [tex]\(x^2\)[/tex] by [tex]\(-x^2\)[/tex]:
[tex]\[ \frac{x^2}{-x^2} = -1 \][/tex]

Now, combine these results:
[tex]\[ (f / g)(x) = -x^2 - x - 1 \][/tex]

Therefore, the simplified form of [tex]\((f / g)(x)\)[/tex] is [tex]\(-x^2 - x - 1\)[/tex].

So the correct answer is:
[tex]\[ - x^2 - x - 1 \][/tex]

Hence, the solution is:
[tex]\(-x^2 - x - 1\)[/tex].