Answer :
Let’s solve the system of linear equations:
[tex]\[ \begin{cases} y = 2x + 3 \\ y = -x + 9 \end{cases} \][/tex]
Step 1: Set the two equations equal to each other to find x.
Since both expressions equal [tex]\( y \)[/tex]:
[tex]\[ 2x + 3 = -x + 9 \][/tex]
Step 2: Solve for [tex]\( x \)[/tex].
Add [tex]\( x \)[/tex] to both sides of the equation:
[tex]\[ 2x + x + 3 = 9 \][/tex]
Combine like terms:
[tex]\[ 3x + 3 = 9 \][/tex]
Subtract 3 from both sides of the equation:
[tex]\[ 3x = 6 \][/tex]
Divide both sides by 3:
[tex]\[ x = 2 \][/tex]
Step 3: Substitute [tex]\( x = 2 \)[/tex] back into one of the original equations to find [tex]\( y \)[/tex].
Using [tex]\( y = 2x + 3 \)[/tex]:
[tex]\[ y = 2(2) + 3 \][/tex]
Perform the multiplication and addition:
[tex]\[ y = 4 + 3 = 7 \][/tex]
So, the solution to the system of equations is:
[tex]\[ (x, y) = (2, 7) \][/tex]
Therefore, the solution to the system of equations is [tex]\( x = 2 \)[/tex] and [tex]\( y = 7 \)[/tex].
[tex]\[ \begin{cases} y = 2x + 3 \\ y = -x + 9 \end{cases} \][/tex]
Step 1: Set the two equations equal to each other to find x.
Since both expressions equal [tex]\( y \)[/tex]:
[tex]\[ 2x + 3 = -x + 9 \][/tex]
Step 2: Solve for [tex]\( x \)[/tex].
Add [tex]\( x \)[/tex] to both sides of the equation:
[tex]\[ 2x + x + 3 = 9 \][/tex]
Combine like terms:
[tex]\[ 3x + 3 = 9 \][/tex]
Subtract 3 from both sides of the equation:
[tex]\[ 3x = 6 \][/tex]
Divide both sides by 3:
[tex]\[ x = 2 \][/tex]
Step 3: Substitute [tex]\( x = 2 \)[/tex] back into one of the original equations to find [tex]\( y \)[/tex].
Using [tex]\( y = 2x + 3 \)[/tex]:
[tex]\[ y = 2(2) + 3 \][/tex]
Perform the multiplication and addition:
[tex]\[ y = 4 + 3 = 7 \][/tex]
So, the solution to the system of equations is:
[tex]\[ (x, y) = (2, 7) \][/tex]
Therefore, the solution to the system of equations is [tex]\( x = 2 \)[/tex] and [tex]\( y = 7 \)[/tex].