Answered

Solve the system of equations:

[tex]\[
\begin{cases}
y = 2x + 3 \\
y = -x + 9
\end{cases}
\][/tex]



Answer :

Let’s solve the system of linear equations:

[tex]\[ \begin{cases} y = 2x + 3 \\ y = -x + 9 \end{cases} \][/tex]

Step 1: Set the two equations equal to each other to find x.

Since both expressions equal [tex]\( y \)[/tex]:

[tex]\[ 2x + 3 = -x + 9 \][/tex]

Step 2: Solve for [tex]\( x \)[/tex].

Add [tex]\( x \)[/tex] to both sides of the equation:

[tex]\[ 2x + x + 3 = 9 \][/tex]

Combine like terms:

[tex]\[ 3x + 3 = 9 \][/tex]

Subtract 3 from both sides of the equation:

[tex]\[ 3x = 6 \][/tex]

Divide both sides by 3:

[tex]\[ x = 2 \][/tex]

Step 3: Substitute [tex]\( x = 2 \)[/tex] back into one of the original equations to find [tex]\( y \)[/tex].

Using [tex]\( y = 2x + 3 \)[/tex]:

[tex]\[ y = 2(2) + 3 \][/tex]

Perform the multiplication and addition:

[tex]\[ y = 4 + 3 = 7 \][/tex]

So, the solution to the system of equations is:

[tex]\[ (x, y) = (2, 7) \][/tex]

Therefore, the solution to the system of equations is [tex]\( x = 2 \)[/tex] and [tex]\( y = 7 \)[/tex].