Which of the following is the solution set of [tex]x + 2 \ \textgreater \ -4[/tex]?

F. [tex]\{x: x \ \textless \ -6\}[/tex]
G. [tex]\{x: x \ \textgreater \ -6\}[/tex]
H. [tex]\{x: x \ \textless \ -2\}[/tex]
J. [tex]\{x: x \ \textgreater \ 2\}[/tex]
K. [tex]\{x: x \ \textless \ 6\}[/tex]



Answer :

To find the solution set of the inequality [tex]\( x + 2 > -4 \)[/tex], let's solve it step-by-step:

1. Identify the inequality:
The given inequality is:
[tex]\[ x + 2 > -4 \][/tex]

2. Isolate [tex]\( x \)[/tex] on one side of the inequality:
To isolate [tex]\( x \)[/tex], we need to get rid of the constant term (which is 2) on the left side. We do this by subtracting 2 from both sides of the inequality:
[tex]\[ x + 2 - 2 > -4 - 2 \][/tex]

3. Simplify both sides:
Simplifying both sides, we get:
[tex]\[ x > -6 \][/tex]

Therefore, the solution set for the inequality [tex]\( x + 2 > -4 \)[/tex] is:
[tex]\[ \{x: x > -6\} \][/tex]

The correct answer from the given choices is:
G. [tex]\(\{x: x > -6\}\)[/tex]