Answer :
Sure! Let's go through the steps to simplify the given equation and record the correct terms on the left side.
The equation we need to simplify is:
[tex]\[ -6(3x + 2) = 4 \][/tex]
### Step 1: Distribute the -6 inside the parentheses
First, we need to distribute the [tex]\(-6\)[/tex] to both terms inside the parentheses:
[tex]\[ -6 \cdot 3x + (-6) \cdot 2 \][/tex]
### Step 2: Multiply each term by -6
We calculate each multiplication separately:
[tex]\[ -6 \cdot 3x = -18x \][/tex]
[tex]\[ -6 \cdot 2 = -12 \][/tex]
### Step 3: Write the simplified left side of the equation
Combining the results from step 2, the left-hand side of the equation is:
[tex]\[ -18x - 12 \][/tex]
### Step 4: Record the simplified left side of the equation
Now, let's write the simplified equation with the correct terms on the left side:
[tex]\[ -18x - 12 = 4 \][/tex]
Thus, the correct terms to go in the box on the left side are:
[tex]\[ -18x - 12 \][/tex]
So, the simplified equation is:
[tex]\[ \boxed{-18x - 12} = 4 \][/tex]
The equation we need to simplify is:
[tex]\[ -6(3x + 2) = 4 \][/tex]
### Step 1: Distribute the -6 inside the parentheses
First, we need to distribute the [tex]\(-6\)[/tex] to both terms inside the parentheses:
[tex]\[ -6 \cdot 3x + (-6) \cdot 2 \][/tex]
### Step 2: Multiply each term by -6
We calculate each multiplication separately:
[tex]\[ -6 \cdot 3x = -18x \][/tex]
[tex]\[ -6 \cdot 2 = -12 \][/tex]
### Step 3: Write the simplified left side of the equation
Combining the results from step 2, the left-hand side of the equation is:
[tex]\[ -18x - 12 \][/tex]
### Step 4: Record the simplified left side of the equation
Now, let's write the simplified equation with the correct terms on the left side:
[tex]\[ -18x - 12 = 4 \][/tex]
Thus, the correct terms to go in the box on the left side are:
[tex]\[ -18x - 12 \][/tex]
So, the simplified equation is:
[tex]\[ \boxed{-18x - 12} = 4 \][/tex]