Answer :
To find the value of [tex]\( k \)[/tex] for which the quadratic equation
[tex]\[ (k+1)x^2 - 6(k+1)x + 3(k+9) = 0, \quad k \neq -1 \][/tex]
has real and equal roots, we must ensure that the discriminant of the quadratic equation is zero.
The general form of a quadratic equation is [tex]\( ax^2 + bx + c = 0 \)[/tex] and its discriminant [tex]\( \Delta \)[/tex] is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
For the roots to be real and equal, the discriminant must be equal to zero.
In our quadratic equation, the coefficients are:
[tex]\[ a = (k+1) \][/tex]
[tex]\[ b = -6(k+1) \][/tex]
[tex]\[ c = 3(k+9) \][/tex]
The discriminant can be calculated as follows:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]:
[tex]\[ \Delta = [-6(k+1)]^2 - 4(k+1)[3(k+9)] \][/tex]
First, let's compute [tex]\( [-6(k+1)]^2 \)[/tex]:
[tex]\[ [-6(k+1)]^2 = 36(k+1)^2 \][/tex]
Next, compute [tex]\( 4(k+1)[3(k+9)] \)[/tex]:
[tex]\[ 4(k+1)[3(k+9)] = 12(k+1)(k+9) \][/tex]
Now, substituting these into the discriminant expression:
[tex]\[ \Delta = 36(k+1)^2 - 12(k+1)(k+9) \][/tex]
Setting the discriminant [tex]\( \Delta \)[/tex] to zero for real and equal roots:
[tex]\[ 36(k+1)^2 - 12(k+1)(k+9) = 0 \][/tex]
Since [tex]\( k \neq -1 \)[/tex], factor out [tex]\( 12(k+1) \)[/tex]:
[tex]\[ 12(k+1)[3(k+1)- (k+9)] = 0 \][/tex]
This simplifies to:
[tex]\[ 12(k+1)(2k-6) = 0 \][/tex]
Since [tex]\( k \neq -1 \)[/tex], we focus on the factor [tex]\( 2k - 6 = 0 \)[/tex]:
[tex]\[ 2k - 6 = 0 \][/tex]
Solving for [tex]\( k \)[/tex]:
[tex]\[ 2k = 6 \][/tex]
[tex]\[ k = 3 \][/tex]
Therefore, the value of [tex]\( k \)[/tex] for which the quadratic equation has real and equal roots is [tex]\( \boxed{3} \)[/tex].
[tex]\[ (k+1)x^2 - 6(k+1)x + 3(k+9) = 0, \quad k \neq -1 \][/tex]
has real and equal roots, we must ensure that the discriminant of the quadratic equation is zero.
The general form of a quadratic equation is [tex]\( ax^2 + bx + c = 0 \)[/tex] and its discriminant [tex]\( \Delta \)[/tex] is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
For the roots to be real and equal, the discriminant must be equal to zero.
In our quadratic equation, the coefficients are:
[tex]\[ a = (k+1) \][/tex]
[tex]\[ b = -6(k+1) \][/tex]
[tex]\[ c = 3(k+9) \][/tex]
The discriminant can be calculated as follows:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]:
[tex]\[ \Delta = [-6(k+1)]^2 - 4(k+1)[3(k+9)] \][/tex]
First, let's compute [tex]\( [-6(k+1)]^2 \)[/tex]:
[tex]\[ [-6(k+1)]^2 = 36(k+1)^2 \][/tex]
Next, compute [tex]\( 4(k+1)[3(k+9)] \)[/tex]:
[tex]\[ 4(k+1)[3(k+9)] = 12(k+1)(k+9) \][/tex]
Now, substituting these into the discriminant expression:
[tex]\[ \Delta = 36(k+1)^2 - 12(k+1)(k+9) \][/tex]
Setting the discriminant [tex]\( \Delta \)[/tex] to zero for real and equal roots:
[tex]\[ 36(k+1)^2 - 12(k+1)(k+9) = 0 \][/tex]
Since [tex]\( k \neq -1 \)[/tex], factor out [tex]\( 12(k+1) \)[/tex]:
[tex]\[ 12(k+1)[3(k+1)- (k+9)] = 0 \][/tex]
This simplifies to:
[tex]\[ 12(k+1)(2k-6) = 0 \][/tex]
Since [tex]\( k \neq -1 \)[/tex], we focus on the factor [tex]\( 2k - 6 = 0 \)[/tex]:
[tex]\[ 2k - 6 = 0 \][/tex]
Solving for [tex]\( k \)[/tex]:
[tex]\[ 2k = 6 \][/tex]
[tex]\[ k = 3 \][/tex]
Therefore, the value of [tex]\( k \)[/tex] for which the quadratic equation has real and equal roots is [tex]\( \boxed{3} \)[/tex].