Select the best answer for the question.

1. Divide [tex]$\frac{7}{15}$[/tex] by [tex]$\frac{3}{5}$[/tex].

A. [tex][tex]$\frac{75}{21}$[/tex][/tex]
B. [tex]$\frac{21}{75}$[/tex]
C. [tex]$\frac{7}{9}$[/tex]
D. [tex][tex]$\frac{7}{25}$[/tex][/tex]



Answer :

To solve the problem of dividing [tex]\(\frac{7}{15}\)[/tex] by [tex]\(\frac{3}{5}\)[/tex], we follow these steps:

1. Understand division by a fraction:
Dividing by a fraction is equivalent to multiplying by its reciprocal. So, [tex]\(\frac{a}{b} \div \frac{c}{d}\)[/tex] is the same as [tex]\(\frac{a}{b} \times \frac{d}{c}\)[/tex].

2. Find the reciprocal:
The reciprocal of [tex]\(\frac{3}{5}\)[/tex] is [tex]\(\frac{5}{3}\)[/tex].

3. Rewrite the division problem as a multiplication problem:
[tex]\[\frac{7}{15} \div \frac{3}{5} = \frac{7}{15} \times \frac{5}{3}\][/tex]

4. Multiply the fractions:
When multiplying fractions, multiply the numerators together and the denominators together:
[tex]\[ \frac{7}{15} \times \frac{5}{3} = \frac{7 \times 5}{15 \times 3} \][/tex]
[tex]\[ = \frac{35}{45} \][/tex]

5. Simplify the resulting fraction:
To simplify [tex]\(\frac{35}{45}\)[/tex], find the greatest common divisor (GCD) of 35 and 45. The GCD of 35 and 45 is 5.
Divide both the numerator and the denominator by their GCD:
[tex]\[ \frac{35 \div 5}{45 \div 5} = \frac{7}{9} \][/tex]

Therefore, [tex]\(\frac{7}{15} \div \frac{3}{5} = \frac{7}{9}\)[/tex].

The correct answer is:
C. [tex]\(\frac{7}{9}\)[/tex]