Answer :

To evaluate the limit
[tex]\[ \lim _{x \rightarrow 2}\left(\frac{1-2 x}{1+6 x}\right)^4, \][/tex]
we need to carefully analyze the behavior of the expression as [tex]\( x \)[/tex] approaches 2.

### Step-by-Step Solution:

1. Identify the function inside the limit:
[tex]\[ f(x) = \left( \frac{1 - 2x}{1 + 6x} \right)^4. \][/tex]

2. Substitute [tex]\( x = 2 \)[/tex] into the function:
[tex]\[ f(2) = \left( \frac{1 - 2 \cdot 2}{1 + 6 \cdot 2} \right)^4. \][/tex]

3. Simplify the numerator and the denominator separately:
[tex]\[ \text{Numerator: } 1 - 2 \cdot 2 = 1 - 4 = -3. \][/tex]
[tex]\[ \text{Denominator: } 1 + 6 \cdot 2 = 1 + 12 = 13. \][/tex]

4. Substitute the simplified values back into the function:
[tex]\[ f(2) = \left( \frac{-3}{13} \right)^4. \][/tex]

5. Simplify the fraction raised to the power of 4:
[tex]\[ \left( \frac{-3}{13} \right)^4 = \left( \frac{3}{13} \right)^4. \][/tex]
Note that raising a negative number to an even power results in a positive number.

6. Calculate the power:
[tex]\[ \left( \frac{3}{13} \right)^4 = \frac{3^4}{13^4}. \][/tex]

7. Compute the final values:
[tex]\[ 3^4 = 81, \][/tex]
[tex]\[ 13^4 = 28561. \][/tex]

Combining these results, we find that:
[tex]\[ \left( \frac{3}{13} \right)^4 = \frac{81}{28561}. \][/tex]

Therefore, the limit is:
[tex]\[ \lim_{x \rightarrow 2}\left(\frac{1-2 x}{1+6 x}\right)^4 = \frac{81}{28561}. \][/tex]