Solve for [tex]$x$[/tex].

[tex]\[2x + 3 = 21\][/tex]

(A) [tex]$x = 12$[/tex]
(B) [tex]$x = 18$[/tex]
(C) [tex][tex]$x = 9$[/tex][/tex]
(D) [tex]$x = \frac{23}{2}$[/tex]



Answer :

To solve the equation [tex]\( 2x + 3 = 21 \)[/tex] for [tex]\( x \)[/tex], follow these steps:

1. Isolate the term with the variable [tex]\( x \)[/tex]:
Start by subtracting [tex]\( 3 \)[/tex] from both sides of the equation to get rid of the constant term on the left side.
[tex]\[ 2x + 3 - 3 = 21 - 3 \][/tex]
Simplifying this, we obtain:
[tex]\[ 2x = 18 \][/tex]

2. Solve for [tex]\( x \)[/tex]:
Next, divide both sides of the equation by [tex]\( 2 \)[/tex] to isolate [tex]\( x \)[/tex].
[tex]\[ \frac{2x}{2} = \frac{18}{2} \][/tex]
Simplifying this, we get:
[tex]\[ x = 9 \][/tex]

So, the solution to the equation [tex]\( 2x + 3 = 21 \)[/tex] is [tex]\( x = 9 \)[/tex].

Thus, the correct answer is:
(C) [tex]\( x = 9 \)[/tex]