Simplify: [tex]\left(2 x^2-4 x+3 y-6\right)+\left(4 y^2-3 x-7 y+4\right)[/tex]

A. [tex]2 x^2-7 x+4 y^2-4 y-2[/tex]

B. [tex]2 x^2+4 y^2-x-4 y+2[/tex]

C. [tex]-5 x-2[/tex]

D. [tex]6 x^2-7 x-4 y-2[/tex]



Answer :

To simplify the given expression, let's carefully combine like terms step by step. The expression we need to simplify is:

[tex]\[ (2 x^2 - 4 x + 3 y - 6) + (4 y^2 - 3 x - 7 y + 4) \][/tex]

First, let's expand the parentheses (if needed) and write down the terms sequentially:

[tex]\[ 2 x^2 - 4 x + 3 y - 6 + 4 y^2 - 3 x - 7 y + 4 \][/tex]

Next, let's group the terms with the same variables together:

For [tex]\(x^2\)[/tex] terms:
[tex]\[ 2 x^2 \][/tex]

For [tex]\(x\)[/tex] terms:
[tex]\[ -4 x - 3 x = -7 x \][/tex]

For [tex]\(y^2\)[/tex] terms:
[tex]\[ 4 y^2 \][/tex]

For [tex]\(y\)[/tex] terms:
[tex]\[ 3 y - 7 y = -4 y \][/tex]

For the constant terms:
[tex]\[ -6 + 4 = -2 \][/tex]

Now, let's combine all these grouped terms to form the simplified expression:

[tex]\[ 2 x^2 - 7 x + 4 y^2 - 4 y - 2 \][/tex]

So, the simplified form of the given expression is:

[tex]\[ 2 x^2 - 7 x + 4 y^2 - 4 y - 2 \][/tex]

Thus, the correct simplified expression from the options provided is:

[tex]\[ 2 x^2 - 7 x + 4 y^2 - 4 y - 2 \][/tex]