Simplify

[tex]\[ \left(3 w^2-2 z^2+3 w\right)-\left(w^2+2 z^2+3 w\right) \][/tex]

A. [tex]\(2 w^2-4 z^2\)[/tex]
B. [tex]\(4 w^2-4 z^2\)[/tex]
C. [tex]\(4 w^2-4 z^2+6 w\)[/tex]
D. [tex]\(2 w^2+6 w\)[/tex]



Answer :

To simplify the expression [tex]\(\left(3 w^2 - 2 z^2 + 3 w\right) - \left(w^2 + 2 z^2 + 3 w\right)\)[/tex], follow these steps:

1. Distribute the subtraction:
[tex]\[ \left(3 w^2 - 2 z^2 + 3 w\right) - \left(w^2 + 2 z^2 + 3 w\right) = 3 w^2 - 2 z^2 + 3 w - w^2 - 2 z^2 - 3 w. \][/tex]

2. Combine like terms:
- Combine the [tex]\(w^2\)[/tex] terms:
[tex]\[ 3 w^2 - w^2 = (3 - 1) w^2 = 2 w^2. \][/tex]
- Combine the [tex]\(z^2\)[/tex] terms:
[tex]\[ -2 z^2 - 2 z^2 = (-2 - 2) z^2 = -4 z^2. \][/tex]
- Combine the [tex]\(w\)[/tex] terms:
[tex]\[ 3 w - 3 w = 0. \][/tex]

3. Write the simplified expression:
[tex]\[ 2 w^2 - 4 z^2. \][/tex]

Hence, the simplified expression is [tex]\(\boxed{2 w^2 - 4 z^2}\)[/tex].