Multiply: [tex]\left(3a^3 - 6b^3\right)\left(4a^2 + 5b^2\right)[/tex]

A. [tex]12a^5 + 15a^3b^2 - 24a^2b^3 - 30b^5[/tex]

B. [tex]12a^6 + 15a^3b^2 - 24a^2b^3 - 30b^6[/tex]

C. [tex]12a^5 - 9a^5b^5 - 30b^5[/tex]

D. [tex]7a^5 + 8a^3b^2 - 2a^2b^3 - b^5[/tex]



Answer :

Let's solve the multiplication of [tex]\(\left(3 a^3 - 6 b^3\right)\left(4 a^2 + 5 b^2\right)\)[/tex] step-by-step.

We will use the distributive property (also known as the FOIL method for binomials):

1. Multiply [tex]\(3 a^3\)[/tex] by each term in [tex]\(4 a^2 + 5 b^2\)[/tex]:
- [tex]\(3 a^3 \times 4 a^2 = 12 a^5\)[/tex]
- [tex]\(3 a^3 \times 5 b^2 = 15 a^3 b^2\)[/tex]

2. Multiply [tex]\(-6 b^3\)[/tex] by each term in [tex]\(4 a^2 + 5 b^2\)[/tex]:
- [tex]\(-6 b^3 \times 4 a^2 = -24 a^2 b^3\)[/tex]
- [tex]\(-6 b^3 \times 5 b^2 = -30 b^5\)[/tex]

Now, combine all these products together:

[tex]\[ 12 a^5 + 15 a^3 b^2 - 24 a^2 b^3 - 30 b^5 \][/tex]

So, the product of [tex]\(\left(3 a^3 - 6 b^3\right)\left(4 a^2 + 5 b^2\right)\)[/tex] is:

[tex]\[ 12 a^5 + 15 a^3 b^2 - 24 a^2 b^3 - 30 b^5 \][/tex]