Let's break down and solve the question step-by-step.
Given:
1. [tex]\(\square^2 = 64\)[/tex]
2. [tex]\( \ ^3 = 64\)[/tex]
First, let's find the value of [tex]\(\square\)[/tex]:
[tex]\[
\square^2 = 64
\][/tex]
To find [tex]\(\square\)[/tex], we take the square root of both sides:
[tex]\[
\square = \sqrt{64}
\][/tex]
Since [tex]\(\sqrt{64} = 8\)[/tex], we have:
[tex]\[
\square = 8
\][/tex]
Next, let's find the value of [tex]\( \)[/tex]:
[tex]\[
\ ^3 = 64
\][/tex]
To find , we take the cube root of both sides:
[tex]\[
= \sqrt[3]{64}
\][/tex]
Since [tex]\(\sqrt[3]{64} = 4\)[/tex], we have:
[tex]\[
= 4
\][/tex]
We are asked to find the result of the operation [tex]\(\square - \)[/tex]:
[tex]\[
\square - = 8 - 4
\][/tex]
Calculating the difference:
[tex]\[
8 - 4 = 4
\][/tex]
Therefore, the result of the operation is [tex]\( \boxed{4} \)[/tex].