What is the equation of a line that passes through [tex]\((4,3)\)[/tex] and has a slope of [tex]\(2\)[/tex]?

A. [tex]\(y = 2x - 11\)[/tex]
B. [tex]\(y = 2x - 7\)[/tex]
C. [tex]\(y = 2x - 5\)[/tex]
D. [tex]\(y = 2x - 1\)[/tex]



Answer :

To find the equation of a line that passes through the point [tex]\((4, 3)\)[/tex] and has a slope of [tex]\(2\)[/tex], we can use the point-slope form of the line equation:

[tex]\[ y - y_1 = m(x - x_1) \][/tex]

where:
- [tex]\((x_1, y_1)\)[/tex] is a point on the line
- [tex]\(m\)[/tex] is the slope

Substituting the given point [tex]\((4, 3)\)[/tex] and the slope [tex]\(2\)[/tex] into the point-slope form, we get:

[tex]\[ y - 3 = 2(x - 4) \][/tex]

Next, we simplify this equation to get it into slope-intercept form [tex]\(y = mx + b\)[/tex]:

1. Distribute the [tex]\(2\)[/tex]:
[tex]\[ y - 3 = 2x - 8 \][/tex]

2. Add [tex]\(3\)[/tex] to both sides to isolate [tex]\(y\)[/tex]:
[tex]\[ y = 2x - 8 + 3 \][/tex]
[tex]\[ y = 2x - 5 \][/tex]

So, the equation of the line is:

[tex]\[ y = 2x - 5 \][/tex]

Given the options:
- [tex]\( y = 2x - 11 \)[/tex]
- [tex]\( y = 2x - 7 \)[/tex]
- [tex]\( y = 2x - 5 \)[/tex]
- [tex]\( y = 2x - 1 \)[/tex]

The correct answer is:

[tex]\[ y = 2x - 5 \][/tex]