Answer :

To solve the problem, we need to find [tex]\( h(10) - g(10) \)[/tex] using the functions provided:

1. Define the functions:

[tex]\( h(a) = 3a + 1 \)[/tex]

[tex]\( g(a) = -a^2 + 1 \)[/tex]

2. Calculate [tex]\( h(10) \)[/tex]:

Substitute [tex]\( a = 10 \)[/tex] into the function [tex]\( h(a) \)[/tex]:

[tex]\[ h(10) = 3 \cdot 10 + 1 \][/tex]

[tex]\[ h(10) = 30 + 1 \][/tex]

[tex]\[ h(10) = 31 \][/tex]

3. Calculate [tex]\( g(10) \)[/tex]:

Substitute [tex]\( a = 10 \)[/tex] into the function [tex]\( g(a) \)[/tex]:

[tex]\[ g(10) = -(10)^2 + 1 \][/tex]

[tex]\[ g(10) = -100 + 1 \][/tex]

[tex]\[ g(10) = -99 \][/tex]

4. Find [tex]\( h(10) - g(10) \)[/tex]:

[tex]\[ h(10) - g(10) = 31 - (-99) \][/tex]

When subtracting a negative number, it is equivalent to adding the absolute value of that number:

[tex]\[ h(10) - g(10) = 31 + 99 \][/tex]

[tex]\[ h(10) - g(10) = 130 \][/tex]

Hence, the values are:

[tex]\[ h(10) = 31 \][/tex]

[tex]\[ g(10) = -99 \][/tex]

And the required result is:

[tex]\[ h(10) - g(10) = 130 \][/tex]