Evaluate [tex]$\frac{4(x+3)(x+1)}{(x+5)(x-5)}$[/tex] for [tex][tex]$x=3$[/tex][/tex].

A. [tex]$-\frac{3}{2}$[/tex]
B. -6
C. 6
D. [tex]$\frac{3}{2}$[/tex]



Answer :

To evaluate the expression [tex]\(\frac{4(x+3)(x+1)}{(x+5)(x-5)}\)[/tex] for [tex]\(x = 3\)[/tex], we can follow these steps:

1. Substitute [tex]\(x = 3\)[/tex] into the expression:
[tex]\[ \frac{4(3+3)(3+1)}{(3+5)(3-5)} \][/tex]

2. Simplify the values inside the parentheses:
[tex]\[ 3 + 3 = 6 \][/tex]
[tex]\[ 3 + 1 = 4 \][/tex]
[tex]\[ 3 + 5 = 8 \][/tex]
[tex]\[ 3 - 5 = -2 \][/tex]

3. Replace these simplified values back into the expression:
[tex]\[ \frac{4 \cdot 6 \cdot 4}{8 \cdot (-2)} \][/tex]

4. Calculate the numerator:
[tex]\[ 4 \cdot 6 = 24 \][/tex]
[tex]\[ 24 \cdot 4 = 96 \][/tex]
So, the numerator is [tex]\(96\)[/tex].

5. Calculate the denominator:
[tex]\[ 8 \cdot (-2) = -16 \][/tex]
So, the denominator is [tex]\(-16\)[/tex].

6. Form the fraction and simplify:
[tex]\[ \frac{96}{-16} = -6 \][/tex]

Therefore, the value of the expression [tex]\(\frac{4(x+3)(x+1)}{(x+5)(x-5)}\)[/tex] at [tex]\(x = 3\)[/tex] is [tex]\(-6\)[/tex].

The correct answer is:
B. -6