Which expression is the simplest form of [tex]-\left(2 x^3 + x^2\right) + 3\left(x^3 - 4 x^2\right)[/tex]?

A. [tex]x^3 - 13 x^2[/tex]
B. [tex]x^3 - 3 x^2[/tex]
C. [tex]5 x^3 - 12 x^2[/tex]
D. [tex]5 x^3 - 11 x^2[/tex]



Answer :

To determine which expression is the simplest form of [tex]\( -\left(2x^3 + x^2\right) + 3\left(x^3 - 4x^2\right) \)[/tex], let's go through the steps to simplify the given expression:

1. Expand the given expression:

The expression to simplify is:
[tex]\[ -\left(2x^3 + x^2\right) + 3\left(x^3 - 4x^2\right) \][/tex]

2. Distribute the negative sign and the scalar:

Distribute the negative sign inside the first term and the scalar [tex]\( 3 \)[/tex] inside the second term:
[tex]\[ -(2x^3 + x^2) = -2x^3 - x^2 \][/tex]
[tex]\[ 3(x^3 - 4x^2) = 3x^3 - 12x^2 \][/tex]

3. Combine the expanded terms:

Now add the two results together:
[tex]\[ -2x^3 - x^2 + 3x^3 - 12x^2 \][/tex]

4. Combine like terms:

Combine the [tex]\( x^3 \)[/tex] terms:
[tex]\[ -2x^3 + 3x^3 = x^3 \][/tex]
Combine the [tex]\( x^2 \)[/tex] terms:
[tex]\[ -x^2 - 12x^2 = -13x^2 \][/tex]

5. Write the simplified expression:

The simplest form of the given expression is:
[tex]\[ x^3 - 13x^2 \][/tex]

6. Match the simplified expression with the given options:

- Option A: [tex]\( x^3 - 13x^2 \)[/tex]
- Option B: [tex]\( x^3 - 3x^2 \)[/tex]
- Option C: [tex]\( 5x^3 - 12x^2 \)[/tex]
- Option D: [tex]\( 5x^3 - 11x^2 \)[/tex]

The simplified expression [tex]\( x^3 - 13x^2 \)[/tex] matches Option A.

Therefore, the correct answer is:
[tex]\[ \boxed{\text{A}} \][/tex]