Answered

Expand [tex]\log \left(\frac{a^2}{b^{-3} c^4}\right)[/tex] to rewrite it as a sum, difference, or product of logarithms.

Choose all correct answers. There may be more than one way to rewrite the expression.



Answer :

To expand [tex]\(\log \left(\frac{a^2}{b^{-3} c^4}\right)\)[/tex] as a sum, difference, or product of logarithms, we'll use the properties of logarithms which are:

1. [tex]\(\log\left(\frac{M}{N}\right) = \log(M) - \log(N)\)[/tex]
2. [tex]\(\log(M \cdot N) = \log(M) + \log(N)\)[/tex]
3. [tex]\(\log(M^k) = k \log(M)\)[/tex]

Let's break down the expression step-by-step:

1. First, recognize the structure of the expression:

[tex]\[ \log \left( \frac{a^2}{b^{-3} c^4} \right) \][/tex]

2. Apply the quotient rule for logarithms:

[tex]\[ \log \left( \frac{a^2}{b^{-3} c^4} \right) = \log(a^2) - \log(b^{-3} c^4) \][/tex]

3. Apply the product rule for logarithms in the second term:

[tex]\[ \log(a^2) - \log(b^{-3} c^4) = \log(a^2) - (\log(b^{-3}) + \log(c^4)) \][/tex]

4. Apply the power rule for logarithms for each term:

[tex]\[ \log(a^2) - (\log(b^{-3}) + \log(c^4)) = 2 \log(a) - (-3 \log(b) + 4 \log(c)) \][/tex]

5. Simplify the expression:

[tex]\[ 2 \log(a) - (-3 \log(b) + 4 \log(c)) = 2 \log(a) - (-3 \log(b)) - 4 \log(c) \][/tex]

[tex]\[ 2 \log(a) + 3 \log(b) - 4 \log(c) \][/tex]

Therefore, the expanded form of [tex]\(\log \left(\frac{a^2}{b^{-3} c^4}\right)\)[/tex] is:

[tex]\[ \log(a^2) + 3\log(b) - \log(c^4) \][/tex]

or more compactly:

[tex]\[ 2 \log(a) + 3 \log(b) - 4 \log(c) \][/tex]

So, the correct and final expanded form is:

[tex]\[ 2 \log(a) + 3 \log(b) - 4 \log(c) \][/tex]