\begin{tabular}{|c|c|c|c|c|c|}
\hline
\# of washers & Initial velocity [tex]$v_1$[/tex] (m/s) & Final velocity [tex]$v_2$[/tex] (m/s) & Time to travel 0.25 m [tex]$t_1$[/tex] (s) & Time to travel 0.50 m [tex]$t_2$[/tex] (s) & Acceleration [tex]$a = \frac{v_2 - v_1}{t_2 - t_1}$[/tex] (m/s[tex]\(^2\)[/tex]) \\
\hline
1 & 0.11 & 0.28 & 2.23 & 3.13 & 0.19 \\
\hline
2 & 0.13 & 0.36 & 1.92 & 2.61 & \\
\hline
\end{tabular}

The acceleration of the car with two washers added to the string would be:



Answer :

To find the acceleration of the car with two washers, we need to use the given data in the table and apply the formula for acceleration. Let's follow these steps carefully:

1. Identify the given values:
- Initial velocity ([tex]\(v_1\)[/tex]): 0.13 m/s
- Final velocity ([tex]\(v_2\)[/tex]): 0.36 m/s
- Time to travel 0.25 m ([tex]\(t_1\)[/tex]): 1.92 s
- Time to travel 0.50 m ([tex]\(t_2\)[/tex]): 2.61 s

2. Recall the formula for acceleration:
[tex]\[ a = \frac{v_2 - v_1}{t_2 - t_1} \][/tex]

3. Plug in the values to the formula:

[tex]\[ a = \frac{0.36 \text{ m/s} - 0.13 \text{ m/s}}{2.61 \text{ s} - 1.92 \text{ s}} \][/tex]

4. Calculate the differences:

[tex]\[ v_2 - v_1 = 0.36 \text{ m/s} - 0.13 \text{ m/s} = 0.23 \text{ m/s} \][/tex]

[tex]\[ t_2 - t_1 = 2.61 \text{ s} - 1.92 \text{ s} = 0.69 \text{ s} \][/tex]

5. Divide the velocity difference by the time difference to find the acceleration:

[tex]\[ a = \frac{0.23 \text{ m/s}}{0.69 \text{ s}} \approx 0.333 \text{ m/s}^2 \][/tex]

Therefore, the acceleration of the car with two washers added to the string is approximately 0.333 m/s².