An electric company calculates a person's monthly bill from the number of kilowatt-hours (kWh), [tex]$x$[/tex], used.

The function [tex]$b(x)=\left\{\begin{array}{cl}0.10 x, & x \leq 200 \\ 0.15(x-200)+20, & x\ \textgreater \ 200\end{array}\right.$[/tex] determines the bill.

How much is the bill for a person who uses 600 kWh in a month?

A. [tex]$\$[/tex] 80[tex]$
B. $[/tex]\[tex]$ 60$[/tex]
C. [tex]$\$[/tex] 70[tex]$
D. $[/tex]\[tex]$ 40$[/tex]



Answer :

To determine the monthly bill using the given function [tex]\( b(x) \)[/tex], we need to follow the tiered billing rates described in the piecewise function:

[tex]\[ b(x) = \begin{cases} 0.10x & \text{if } x \leq 200 \\ 0.15(x - 200) + 20 & \text{if } x > 200 \end{cases} \][/tex]

Given the usage of 600 kWh, we see that 600 kWh is more than 200 kWh, so we use the second part of the piecewise function:
[tex]\[ b(x) = 0.15(x - 200) + 20 \][/tex]

Substitute [tex]\( x = 600 \)[/tex] into the function:
[tex]\[ b(600) = 0.15(600 - 200) + 20 \][/tex]

First, we perform the subtraction inside the parentheses:
[tex]\[ 600 - 200 = 400 \][/tex]

Next, we multiply by 0.15:
[tex]\[ 0.15 \times 400 = 60 \][/tex]

Finally, we add 20 to the result:
[tex]\[ 60 + 20 = 80 \][/tex]

Therefore, the bill for a person who uses 600 kWh in a month is:
[tex]\[ \$ 80 \][/tex]

Hence, the correct answer is:

A. \$ 80