10. [tex]\[ 25 \div 5 - 16 \div 8 \][/tex]

13. [tex]\[ \frac{4}{7} \div \frac{6}{7} \times \left( \frac{8}{9} + \frac{1}{4} \right) \][/tex]

Use of Brackets: Operations Involving Brackets

Study the following groups:



Answer :

Sure, let’s solve each of these expressions step by step.

### Question 10: [tex]\( 25 \div 5 - 16 \div 8 \)[/tex]

1. Step 1: Perform the division operations separately.
[tex]\[ \frac{25}{5} = 5 \][/tex]
[tex]\[ \frac{16}{8} = 2 \][/tex]

2. Step 2: Subtract the results of the divisions.
[tex]\[ 5 - 2 = 3 \][/tex]

So, the result for question 10 is [tex]\( \boxed{3} \)[/tex].

### Question 13: [tex]\( \frac{4}{7} \div \frac{6}{7} \)[/tex] of [tex]\( \frac{8}{9} + \frac{1}{4} \)[/tex]

1. Step 1: Start with the division of fractions. When dividing by a fraction, multiply by its reciprocal.
[tex]\[ \frac{4}{7} \div \frac{6}{7} = \frac{4}{7} \times \frac{7}{6} \][/tex]
Simplify by multiplying:
[tex]\[ \frac{4 \cdot 7}{7 \cdot 6} = \frac{4}{6} = \frac{2}{3} = 0.6666666666666666 \][/tex]

2. Step 2: Perform the addition inside the parenthesis.
[tex]\[ \frac{8}{9} + \frac{1}{4} \][/tex]
Find a common denominator to add these fractions:
The least common multiple of 9 and 4 is 36.

Convert the fractions:
[tex]\[ \frac{8}{9} = \frac{8 \times 4}{9 \times 4} = \frac{32}{36} \][/tex]
[tex]\[ \frac{1}{4} = \frac{1 \times 9}{4 \times 9} = \frac{9}{36} \][/tex]

Add the fractions:
[tex]\[ \frac{32}{36} + \frac{9}{36} = \frac{41}{36} = 1.1388888888888888 \][/tex]

3. Step 3: Multiply the results from step 1 and step 2.
[tex]\[ 0.6666666666666666 \times 1.1388888888888888 = 0.7592592592592592 \][/tex]

So, the result for question 13 is [tex]\( \boxed{0.7592592592592592} \)[/tex].

Thus, the answers are:
1. [tex]\( 25 \div 5 - 16 \div 8 = 3 \)[/tex]
2. [tex]\( \frac{4}{7} \div \frac{6}{7} \)[/tex] of [tex]\( \frac{8}{9} + \frac{1}{4} = 0.7592592592592592 \)[/tex]