Use the elimination method to solve the system of equations. Choose the correct ordered pair.

[tex]\[
\begin{array}{l}
6x + 2y = 8 \\
12x + y = 22
\end{array}
\][/tex]

A. [tex]\((4, -4)\)[/tex]
B. [tex]\((-3, 3)\)[/tex]
C. [tex]\((-1, 1)\)[/tex]
D. [tex]\((2, -2)\)[/tex]



Answer :

To solve the system of equations using the elimination method, we start with the given equations:

[tex]\[ \begin{array}{l} 6x + 2y = 8 \quad (1) \\ 12x + y = 22 \quad (2) \end{array} \][/tex]

### Step 1: Make the coefficients of [tex]\( y \)[/tex] the same

We can achieve this by manipulating the given equations. One effective approach is to make the coefficient of [tex]\( y \)[/tex] the same in both equations:

- Multiply the first equation by 1 (to keep it the same):
[tex]\[ 6x + 2y = 8 \quad (3) \][/tex]

- Multiply the second equation by 2:
[tex]\[ 2 \cdot (12x + y) = 2 \cdot 22 \implies 24x + 2y = 44 \quad (4) \][/tex]

So now we have the system of equations:
[tex]\[ \begin{array}{l} 6x + 2y = 8 \quad (3) \\ 24x + 2y = 44 \quad (4) \end{array} \][/tex]

### Step 2: Eliminate [tex]\( y \)[/tex] by subtracting the equations

Next, we subtract equation (3) from equation (4) to eliminate [tex]\( y \)[/tex]:

[tex]\[ (24x + 2y) - (6x + 2y) = 44 - 8 \][/tex]

Simplifying the above equation:
[tex]\[ 24x + 2y - 6x - 2y = 36 \][/tex]
[tex]\[ 18x = 36 \][/tex]

### Step 3: Solve for [tex]\( x \)[/tex]

Solving for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{36}{18} = 2 \][/tex]

### Step 4: Substitute [tex]\( x \)[/tex] back into one of the original equations to find [tex]\( y \)[/tex]

We substitute [tex]\( x = 2 \)[/tex] back into the first equation:

[tex]\[ 6x + 2y = 8 \][/tex]

Substitute [tex]\( x = 2 \)[/tex]:
[tex]\[ 6(2) + 2y = 8 \][/tex]
[tex]\[ 12 + 2y = 8 \][/tex]

Solving for [tex]\( y \)[/tex]:
[tex]\[ 2y = 8 - 12 \][/tex]
[tex]\[ 2y = -4 \][/tex]
[tex]\[ y = \frac{-4}{2} = -2 \][/tex]

### Conclusion

The solution to the system of equations is:
[tex]\[ (x, y) = (2, -2) \][/tex]

So the correct ordered pair is:
[tex]\[ \boxed{(2, -2)} \][/tex]

Thus, the correct answer is:
[tex]\[ \text{D. } (2, -2) \][/tex]