Answer :
To solve the system of equations using the elimination method, we start with the given equations:
[tex]\[ \begin{array}{l} 6x + 2y = 8 \quad (1) \\ 12x + y = 22 \quad (2) \end{array} \][/tex]
### Step 1: Make the coefficients of [tex]\( y \)[/tex] the same
We can achieve this by manipulating the given equations. One effective approach is to make the coefficient of [tex]\( y \)[/tex] the same in both equations:
- Multiply the first equation by 1 (to keep it the same):
[tex]\[ 6x + 2y = 8 \quad (3) \][/tex]
- Multiply the second equation by 2:
[tex]\[ 2 \cdot (12x + y) = 2 \cdot 22 \implies 24x + 2y = 44 \quad (4) \][/tex]
So now we have the system of equations:
[tex]\[ \begin{array}{l} 6x + 2y = 8 \quad (3) \\ 24x + 2y = 44 \quad (4) \end{array} \][/tex]
### Step 2: Eliminate [tex]\( y \)[/tex] by subtracting the equations
Next, we subtract equation (3) from equation (4) to eliminate [tex]\( y \)[/tex]:
[tex]\[ (24x + 2y) - (6x + 2y) = 44 - 8 \][/tex]
Simplifying the above equation:
[tex]\[ 24x + 2y - 6x - 2y = 36 \][/tex]
[tex]\[ 18x = 36 \][/tex]
### Step 3: Solve for [tex]\( x \)[/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{36}{18} = 2 \][/tex]
### Step 4: Substitute [tex]\( x \)[/tex] back into one of the original equations to find [tex]\( y \)[/tex]
We substitute [tex]\( x = 2 \)[/tex] back into the first equation:
[tex]\[ 6x + 2y = 8 \][/tex]
Substitute [tex]\( x = 2 \)[/tex]:
[tex]\[ 6(2) + 2y = 8 \][/tex]
[tex]\[ 12 + 2y = 8 \][/tex]
Solving for [tex]\( y \)[/tex]:
[tex]\[ 2y = 8 - 12 \][/tex]
[tex]\[ 2y = -4 \][/tex]
[tex]\[ y = \frac{-4}{2} = -2 \][/tex]
### Conclusion
The solution to the system of equations is:
[tex]\[ (x, y) = (2, -2) \][/tex]
So the correct ordered pair is:
[tex]\[ \boxed{(2, -2)} \][/tex]
Thus, the correct answer is:
[tex]\[ \text{D. } (2, -2) \][/tex]
[tex]\[ \begin{array}{l} 6x + 2y = 8 \quad (1) \\ 12x + y = 22 \quad (2) \end{array} \][/tex]
### Step 1: Make the coefficients of [tex]\( y \)[/tex] the same
We can achieve this by manipulating the given equations. One effective approach is to make the coefficient of [tex]\( y \)[/tex] the same in both equations:
- Multiply the first equation by 1 (to keep it the same):
[tex]\[ 6x + 2y = 8 \quad (3) \][/tex]
- Multiply the second equation by 2:
[tex]\[ 2 \cdot (12x + y) = 2 \cdot 22 \implies 24x + 2y = 44 \quad (4) \][/tex]
So now we have the system of equations:
[tex]\[ \begin{array}{l} 6x + 2y = 8 \quad (3) \\ 24x + 2y = 44 \quad (4) \end{array} \][/tex]
### Step 2: Eliminate [tex]\( y \)[/tex] by subtracting the equations
Next, we subtract equation (3) from equation (4) to eliminate [tex]\( y \)[/tex]:
[tex]\[ (24x + 2y) - (6x + 2y) = 44 - 8 \][/tex]
Simplifying the above equation:
[tex]\[ 24x + 2y - 6x - 2y = 36 \][/tex]
[tex]\[ 18x = 36 \][/tex]
### Step 3: Solve for [tex]\( x \)[/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{36}{18} = 2 \][/tex]
### Step 4: Substitute [tex]\( x \)[/tex] back into one of the original equations to find [tex]\( y \)[/tex]
We substitute [tex]\( x = 2 \)[/tex] back into the first equation:
[tex]\[ 6x + 2y = 8 \][/tex]
Substitute [tex]\( x = 2 \)[/tex]:
[tex]\[ 6(2) + 2y = 8 \][/tex]
[tex]\[ 12 + 2y = 8 \][/tex]
Solving for [tex]\( y \)[/tex]:
[tex]\[ 2y = 8 - 12 \][/tex]
[tex]\[ 2y = -4 \][/tex]
[tex]\[ y = \frac{-4}{2} = -2 \][/tex]
### Conclusion
The solution to the system of equations is:
[tex]\[ (x, y) = (2, -2) \][/tex]
So the correct ordered pair is:
[tex]\[ \boxed{(2, -2)} \][/tex]
Thus, the correct answer is:
[tex]\[ \text{D. } (2, -2) \][/tex]