Select the best answer for the question.

Which fraction has a value that's equal to [tex]\frac{7}{8}[/tex]?

A. [tex]\frac{49}{64}[/tex]
B. [tex]\frac{15}{8}[/tex]
C. [tex]\frac{56}{8}[/tex]
D. [tex]\frac{21}{24}[/tex]



Answer :

To determine which fraction is equal to [tex]\( \frac{7}{8} \)[/tex], we need to compare each option to [tex]\( \frac{7}{8} \)[/tex].

Let's analyze each option:

Option A: [tex]\( \frac{49}{64} \)[/tex]:
[tex]\[ \frac{49}{64} \quad \text{can be simplified as} \quad \frac{49}{64} = \frac{7^2}{8^2} \text{, which is also equal to }\left(\frac{7}{8}\right)^2 \neq \frac{7}{8} \][/tex]
Thus, [tex]\(\frac{49}{64} \neq \frac{7}{8}\)[/tex].

Option B: [tex]\( \frac{15}{8} \)[/tex]:
[tex]\[ \frac{15}{8} = \frac{15}{8} \][/tex]
We can see this fraction is not equal to [tex]\( \frac{7}{8}\)[/tex].

Option C: [tex]\( \frac{56}{8} \)[/tex]:
[tex]\[ \frac{56}{8} = 7 \][/tex]
Clearly, this is not equal to [tex]\( \frac{7}{8} \)[/tex].

Option D: [tex]\( \frac{21}{24} \)[/tex]:
[tex]\[ \frac{21}{24} = \frac{21 \div 3}{24 \div 3} = \frac{7}{8} \][/tex]
Here, we find that [tex]\( \frac{21}{24} \)[/tex] simplifies exactly to [tex]\( \frac{7}{8} \)[/tex].

Therefore, the fraction that is equal to [tex]\( \frac{7}{8} \)[/tex] is Option D: [tex]\( \frac{21}{24} \)[/tex].