Given that [tex]\( f(x) \)[/tex] is even and [tex]\( g(x) \)[/tex] is odd, determine whether each function is even, odd, or neither.

1. [tex]\((f \cdot g)(x) = \square \)[/tex]

2. [tex]\((g \cdot g)(x) = \square \)[/tex]



Answer :

To determine the nature of the functions [tex]\((f \cdot g)(x)\)[/tex] and [tex]\((g \cdot g)(x)\)[/tex] given that [tex]\(f(x)\)[/tex] is even and [tex]\(g(x)\)[/tex] is odd, let's analyze their properties step-by-step.

### Definitions
1. Even Function:
- A function [tex]\( f(x) \)[/tex] is even if [tex]\( f(-x) = f(x) \)[/tex] for all [tex]\( x \)[/tex].

2. Odd Function:
- A function [tex]\( g(x) \)[/tex] is odd if [tex]\( g(-x) = -g(x) \)[/tex] for all [tex]\( x \)[/tex].

### Analysis

#### 1. [tex]\((f \cdot g)(x)\)[/tex]
To determine whether [tex]\((f \cdot g)(x)\)[/tex] is even, odd, or neither:

- By definition:
[tex]\[ (f \cdot g)(x) = f(x) \cdot g(x) \][/tex]

- Evaluate [tex]\((f \cdot g)(-x)\)[/tex]:
[tex]\[ (f \cdot g)(-x) = f(-x) \cdot g(-x) \][/tex]

- Since [tex]\( f(x) \)[/tex] is even:
[tex]\[ f(-x) = f(x) \][/tex]

- Since [tex]\( g(x) \)[/tex] is odd:
[tex]\[ g(-x) = -g(x) \][/tex]

- Substitute these properties:
[tex]\[ (f \cdot g)(-x) = f(-x) \cdot g(-x) = f(x) \cdot (-g(x)) = -f(x) \cdot g(x) \][/tex]

- Notice that:
[tex]\[ (f \cdot g)(-x) = - (f \cdot g)(x) \][/tex]

This tells us that [tex]\((f \cdot g)(x)\)[/tex] satisfies the definition of an odd function, since [tex]\((f \cdot g)(-x) = - (f \cdot g)(x)\)[/tex].

So,
[tex]\[ (f \cdot g)(x) \text{ is an } \textbf{odd} \text{ function}. \][/tex]

#### 2. [tex]\((g \cdot g)(x)\)[/tex]
To determine whether [tex]\((g \cdot g)(x)\)[/tex] is even, odd, or neither:

- By definition:
[tex]\[ (g \cdot g)(x) = g(x) \cdot g(x) \][/tex]

- Evaluate [tex]\((g \cdot g)(-x)\)[/tex]:
[tex]\[ (g \cdot g)(-x) = g(-x) \cdot g(-x) \][/tex]

- Since [tex]\( g(x) \)[/tex] is odd:
[tex]\[ g(-x) = -g(x) \][/tex]

- Substitute this property:
[tex]\[ (g \cdot g)(-x) = (-g(x)) \cdot (-g(x)) = g(x) \cdot g(x) \][/tex]

- Notice that:
[tex]\[ (g \cdot g)(-x) = (g \cdot g)(x) \][/tex]

This tells us that [tex]\((g \cdot g)(x)\)[/tex] satisfies the definition of an even function, since [tex]\((g \cdot g)(-x) = (g \cdot g)(x)\)[/tex].

So,
[tex]\[ (g \cdot g)(x) \text{ is an } \textbf{even} \text{ function}. \][/tex]

### Summary:
- [tex]\( (f \cdot g)(x) \)[/tex] is an [tex]\(\textbf{odd}\)[/tex] function.
- [tex]\( (g \cdot g)(x) \)[/tex] is an [tex]\(\textbf{even}\)[/tex] function.