Determine the vertex form and the maximum or minimum value of the function.

[tex]\[ f(x) = 2x^2 + 8x + 3 \][/tex]

A. [tex]\( f(x) = 2(x + 4)^2 - 13 \)[/tex], the maximum value of [tex]\( f \)[/tex] is -13
B. [tex]\( f(x) = 2(x + 4)^2 - 13 \)[/tex], the minimum value of [tex]\( f \)[/tex] is -13
C. [tex]\( f(x) = 2(x + 2)^2 - 5 \)[/tex], the maximum value of [tex]\( f \)[/tex] is -5
D. [tex]\( f(x) = 2(x + 2)^2 - 5 \)[/tex], the minimum value of [tex]\( f \)[/tex] is -5



Answer :

To determine the vertex form of the quadratic function [tex]\( f(x) = 2x^2 + 8x + 3 \)[/tex] and find the maximum or minimum value of the function, we can follow these steps:

1. Identify the standard form of the quadratic function:
[tex]\[ f(x) = ax^2 + bx + c \][/tex]
Here, [tex]\( a = 2 \)[/tex], [tex]\( b = 8 \)[/tex], and [tex]\( c = 3 \)[/tex].

2. Find the vertex (h, k):
The vertex form of a quadratic function [tex]\( f(x) = a(x-h)^2 + k \)[/tex] represents the quadratic function in a way that makes the vertex [tex]\((h, k)\)[/tex] easily identifiable. The vertex can be found using the formulas:
[tex]\[ h = -\frac{b}{2a} \][/tex]
[tex]\[ k = f(h) = a(h)^2 + b(h) + c \][/tex]

Plugging in the given values:
[tex]\[ h = -\frac{8}{2 \cdot 2} = -\frac{8}{4} = -2 \][/tex]

Substitute [tex]\( h = -2 \)[/tex] back into the original function to find [tex]\( k \)[/tex]:
[tex]\[ k = 2(-2)^2 + 8(-2) + 3 = 2(4) - 16 + 3 = 8 - 16 + 3 = -5 \][/tex]

So, the vertex is [tex]\((-2, -5)\)[/tex].

3. Write the function in vertex form:
Using the values of [tex]\( a \)[/tex], [tex]\( h \)[/tex], and [tex]\( k \)[/tex], we can write the vertex form of the function:
[tex]\[ f(x) = a(x-h)^2 + k \][/tex]
[tex]\[ f(x) = 2(x - (-2))^2 + (-5) \][/tex]
[tex]\[ f(x) = 2(x + 2)^2 - 5 \][/tex]

Hence, the vertex form of the function is:
[tex]\[ f(x) = 2(x + 2)^2 - 5 \][/tex]

4. Determine if the vertex is a maximum or minimum:
The sign of the coefficient [tex]\( a \)[/tex] in the quadratic function determines whether the parabola opens upwards or downwards:
- If [tex]\( a > 0 \)[/tex], the parabola opens upwards and the vertex is a minimum point.
- If [tex]\( a < 0 \)[/tex], the parabola opens downwards and the vertex is a maximum point.

Since [tex]\( a = 2 \)[/tex] (which is greater than 0), the parabola opens upwards. Therefore, the vertex [tex]\((-2, -5)\)[/tex] is a minimum point.

5. State the minimum value of the function:
The minimum value of the function [tex]\( f(x) \)[/tex] is the [tex]\( y \)[/tex]-value of the vertex, which is [tex]\( k = -5 \)[/tex].

Hence, the detailed solution is:

- The vertex form of the function is:
[tex]\[ f(x) = 2(x + 2)^2 - 5 \][/tex]

- The type of vertex is a minimum point.

- The minimum value of the function is:
[tex]\[ -5 \][/tex]