Use the values in the table to determine the slope.

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-4 & 19 \\
\hline
-2 & 16 \\
\hline
0 & 13 \\
\hline
2 & 10 \\
\hline
4 & 7 \\
\hline
\end{tabular}

The slope formula is:

[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Options:
A. none
B. [tex]$\frac{3}{2}$[/tex]
C. 0
D. [tex]$-\frac{3}{2}$[/tex]



Answer :

To determine the slope [tex]\(m\)[/tex] from the given table of points, we can use the formula for the slope of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex]:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Let's select the first two points from the table to find the slope. These points are:
[tex]\[ (x_1, y_1) = (-4, 19) \][/tex]
[tex]\[ (x_2, y_2) = (-2, 16) \][/tex]

Substitute these values into the slope formula:
[tex]\[ m = \frac{16 - 19}{-2 - (-4)} \][/tex]

Simplify the numerator and the denominator separately:
[tex]\[ 16 - 19 = -3 \][/tex]
[tex]\[ -2 - (-4) = -2 + 4 = 2 \][/tex]

Thus, the slope is:
[tex]\[ m = \frac{-3}{2} \][/tex]

So, the correct value of the slope is:
[tex]\[ -\frac{3}{2} \][/tex]