Answer :
To determine the slope [tex]\(m\)[/tex] from the given table of points, we can use the formula for the slope of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex]:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Let's select the first two points from the table to find the slope. These points are:
[tex]\[ (x_1, y_1) = (-4, 19) \][/tex]
[tex]\[ (x_2, y_2) = (-2, 16) \][/tex]
Substitute these values into the slope formula:
[tex]\[ m = \frac{16 - 19}{-2 - (-4)} \][/tex]
Simplify the numerator and the denominator separately:
[tex]\[ 16 - 19 = -3 \][/tex]
[tex]\[ -2 - (-4) = -2 + 4 = 2 \][/tex]
Thus, the slope is:
[tex]\[ m = \frac{-3}{2} \][/tex]
So, the correct value of the slope is:
[tex]\[ -\frac{3}{2} \][/tex]
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Let's select the first two points from the table to find the slope. These points are:
[tex]\[ (x_1, y_1) = (-4, 19) \][/tex]
[tex]\[ (x_2, y_2) = (-2, 16) \][/tex]
Substitute these values into the slope formula:
[tex]\[ m = \frac{16 - 19}{-2 - (-4)} \][/tex]
Simplify the numerator and the denominator separately:
[tex]\[ 16 - 19 = -3 \][/tex]
[tex]\[ -2 - (-4) = -2 + 4 = 2 \][/tex]
Thus, the slope is:
[tex]\[ m = \frac{-3}{2} \][/tex]
So, the correct value of the slope is:
[tex]\[ -\frac{3}{2} \][/tex]