Use the table to answer the question.

Find the product of [tex](4x^3 + 2x^2)(6x - 9)[/tex]. Provide your answer in descending order of exponents.

[tex](4x^3 + 2x^2)(6x - 9) = 24x^4 - 18x^2[/tex]

- Make sure to distribute and combine like terms (if any).

Check answer. Remaining attempts: 2



Answer :

To find the product of [tex]\((4x^3 + 2x^2)(6x - 9)\)[/tex], we will use the distributive property to expand the expression and then combine like terms.

Given:
[tex]\[ (4x^3 + 2x^2)(6x - 9) \][/tex]

Step 1: Distribute each term in the first polynomial to each term in the second polynomial.

- Multiply [tex]\(4x^3\)[/tex] by [tex]\(6x\)[/tex]:
[tex]\[ 4x^3 \cdot 6x = 24x^4 \][/tex]

- Multiply [tex]\(4x^3\)[/tex] by [tex]\(-9\)[/tex]:
[tex]\[ 4x^3 \cdot (-9) = -36x^3 \][/tex]

- Multiply [tex]\(2x^2\)[/tex] by [tex]\(6x\)[/tex]:
[tex]\[ 2x^2 \cdot 6x = 12x^3 \][/tex]

- Multiply [tex]\(2x^2\)[/tex] by [tex]\(-9\)[/tex]:
[tex]\[ 2x^2 \cdot (-9) = -18x^2 \][/tex]

Step 2: Combine the like terms.
- Combine the [tex]\(x^3\)[/tex] terms:
[tex]\[ -36x^3 + 12x^3 = -24x^3 \][/tex]

The final expression is:
[tex]\[ 24x^4 - 24x^3 - 18x^2 \][/tex]

The polynomial after all terms are combined, in descending order of exponents, is:
[tex]\[ 24x^4 - 24x^3 - 18x^2 \][/tex]