Graph the logarithmic function:

[tex]\[ g(x) = -3 + \log_3 x \][/tex]

Plot two points on the graph of the function, and also draw the asymptote. Then click on the graph-a-function button.

[tex]\[ \square \][/tex]



Answer :

Let's graph the function [tex]\( g(x) = -3 + \log_3(x) \)[/tex].

### Step-by-Step Solution

1. Identify the Function and its Components:

- The function provided is [tex]\( g(x) = -3 + \log_3(x) \)[/tex].

2. Generate [tex]\( x \)[/tex]-values:

- We will generate [tex]\( x \)[/tex]-values over an interval. For this example, let's consider values ranging from 0.1 to 10.

3. Calculate Corresponding [tex]\( g(x) \)[/tex]-values:

- We need to calculate the corresponding [tex]\( g(x) \)[/tex]-values for each of these [tex]\( x \)[/tex]-values using the function's formula [tex]\( g(x) = -3 + \log_3(x) \)[/tex].

- Here is a subset of calculated values:
- For [tex]\( x = 0.1 \)[/tex], [tex]\( g(x) \approx -5.096 \)[/tex]
- For [tex]\( x = 1 \)[/tex], [tex]\( g(x) = -3 \)[/tex]
- For [tex]\( x = 3 \)[/tex], [tex]\( g(x) = -2 \)[/tex]
- For [tex]\( x = 10 \)[/tex], [tex]\( g(x) \approx 0.905 \)[/tex]

4. Choose Two Points for Plotting:

- We will use two points from the computed values:
- Point 1: [tex]\( (1, -3) \)[/tex]
- Point 2: [tex]\( (3, -2) \)[/tex]

5. Draw the Asymptote:

- The vertical asymptote of the logarithmic function [tex]\( g(x) = \log_3(x) \)[/tex] is at [tex]\( x = 0 \)[/tex]. This asymptote will be the line [tex]\( x = 0 \)[/tex].

6. Plot the Points and Asymptote:

- Points:
- Plot [tex]\( (1, -3) \)[/tex]
- Plot [tex]\( (3, -2) \)[/tex]

- Asymptote:
- Draw a vertical line at [tex]\( x = 0 \)[/tex].

7. Graph the Function:

- Using the [tex]\( x \)[/tex]-values and the corresponding [tex]\( g(x) \)[/tex]-values, plot the curve through these points.

Here's a simplified representation of the graph with points and asymptote:

### Graph Representation:

- Vertical Asymptote: [tex]\( x = 0 \)[/tex]

- Points on the Graph:
- [tex]\( (1, -3) \)[/tex]
- [tex]\( (3, -2) \)[/tex]

```
y
|
|
| .
|
| (3, -2)
| .
|
| .
|
|_______(1, -3)_________________________ x
|
```

Note:
- The plot above is a simplified sketch. In practice, you would use graphing software or tools to plot a more precise curve.

This plot visually represents [tex]\( g(x) = -3 + \log_3(x) \)[/tex] with the chosen points and the asymptote.