Find and simplify the difference quotient [tex]\frac{f(x+h)-f(x)}{h}, \ h \neq 0[/tex] for the given function.

[tex]f(x)=\frac{1}{4 x}[/tex]

A. [tex]\frac{-1}{4 x(x+h)}[/tex]

B. 0

C. [tex]\frac{-1}{x(x+h)}[/tex]

D. [tex]\frac{1}{4 x}[/tex]



Answer :

To find and simplify the difference quotient for the given function [tex]\( f(x) = \frac{1}{4x} \)[/tex], follow these detailed steps:

1. Definition of the Difference Quotient:

The difference quotient for any function [tex]\( f(x) \)[/tex] is given by:
[tex]\[ \frac{f(x+h) - f(x)}{h} \][/tex]
where [tex]\( h \neq 0 \)[/tex].

2. Substitute [tex]\( f(x) \)[/tex] and [tex]\( f(x+h) \)[/tex]:

Here, [tex]\( f(x) = \frac{1}{4x} \)[/tex]. We need to evaluate [tex]\( f(x+h) \)[/tex]:
[tex]\[ f(x + h) = \frac{1}{4(x + h)} \][/tex]

3. Form the Difference Quotient:

Substitute [tex]\( f(x + h) \)[/tex] and [tex]\( f(x) \)[/tex] into the difference quotient formula:
[tex]\[ \frac{f(x+h) - f(x)}{h} = \frac{\frac{1}{4(x + h)} - \frac{1}{4x}}{h} \][/tex]

4. Combine the Fractions in the Numerator:

To combine the fractions, find a common denominator:
[tex]\[ \frac{1}{4(x + h)} - \frac{1}{4x} = \frac{x - (x + h)}{4x(x + h)} = \frac{x - x - h}{4x(x + h)} = \frac{-h}{4x(x + h)} \][/tex]

5. Simplify the Difference Quotient:

Substitute this back into the difference quotient:
[tex]\[ \frac{\frac{-h}{4x(x + h)}}{h} = \frac{-h}{4x(x + h)} \cdot \frac{1}{h} = \frac{-1}{4x(x + h)} \][/tex]

6. Final Simplified Form:

The simplified form of the difference quotient is:
[tex]\[ \frac{-1}{4x(x + h)} \][/tex]

So, the correct answer is:

A. [tex]\(\frac{-1}{4x(x + h)}\)[/tex]