If [tex]$JM = 5x - 8$[/tex] and [tex]$LM = 2x - 6$[/tex], which expression represents [tex][tex]$JL$[/tex][/tex]?

A. [tex]3x - 2[/tex]
B. [tex]3x - 14[/tex]
C. [tex]7x - 2[/tex]
D. [tex]7x - 14[/tex]



Answer :

To determine which expression represents [tex]\( JL \)[/tex], we need to add the expressions for [tex]\( JM \)[/tex] and [tex]\( LM \)[/tex].

Given:
[tex]\[ JM = 5x - 8 \][/tex]
[tex]\[ LM = 2x - 6 \][/tex]

To find [tex]\( JL \)[/tex], we add [tex]\( JM \)[/tex] and [tex]\( LM \)[/tex]:

[tex]\[ JL = (5x - 8) + (2x - 6) \][/tex]

Let's add the two expressions step-by-step.

1. Combine the [tex]\( x \)[/tex]-terms:
[tex]\[ 5x + 2x = 7x \][/tex]

2. Combine the constant terms:
[tex]\[ -8 - 6 = -14 \][/tex]

Hence, the expression for [tex]\( JL \)[/tex] is:
[tex]\[ JL = 7x - 14 \][/tex]

Now, we need to find this expression among the given answer choices:

1. [tex]\( 3x - 2 \)[/tex]
2. [tex]\( 3x - 14 \)[/tex]
3. [tex]\( 7x - 2 \)[/tex]
4. [tex]\( 7x - 14 \)[/tex]

The correct expression for [tex]\( JL \)[/tex] is [tex]\( 7x - 14 \)[/tex], which matches the fourth option.

Therefore, the correct answer is:
[tex]\[ 7x - 14 \][/tex]

Among the given options, this is option number 4.