The number of bacteria in a culture decreases according to a continuous exponential decay model. The initial population in a study is 320 bacteria, and there are 240 bacteria left after 17 minutes.

(a) Let [tex]$t$[/tex] be the time (in minutes) since the beginning of the study, and let [tex]$y$[/tex] be the number of bacteria at time [tex][tex]$t$[/tex][/tex]. Write a formula relating [tex]$y$[/tex] to [tex]$t$[/tex]. Use exact expressions to fill in the missing parts of the formula. Do not use approximations.

[tex] y = \square e^{(D t)} [/tex]

(b) How many bacteria are there 21 minutes after the beginning of the study? Do not round any intermediate computations, and round your answer to the nearest whole number.

[tex] \square [/tex] bacteria



Answer :

Given the problem, let's break it down step by step:

### Part (a)
We are given that the number of bacteria in a culture decreases according to a continuous exponential decay model. The initial population is 320 bacteria, and there are 240 bacteria left after 17 minutes.

1. Exponential Decay Model: The general model for exponential decay can be written as:
[tex]\[ y = y_0 e^{kt} \][/tex]
where [tex]\( y_0 \)[/tex] is the initial population, [tex]\( k \)[/tex] is the decay constant, and [tex]\( t \)[/tex] is time.

2. Initial Population: Here, [tex]\( y_0 = 320 \)[/tex].

3. Given Data Point:
After 17 minutes, the population is 240:
[tex]\[ 240 = 320 e^{k \cdot 17} \][/tex]

4. Solve for [tex]\( k \)[/tex]:
Rearrange the equation to solve for [tex]\( k \)[/tex]:
[tex]\[ \frac{240}{320} = e^{17k} \][/tex]
[tex]\[ 0.75 = e^{17k} \][/tex]
Taking the natural logarithm on both sides to solve for [tex]\( k \)[/tex]:
[tex]\[ \ln(0.75) = 17k \][/tex]
[tex]\[ k = \frac{\ln(0.75)}{17} \][/tex]

5. Plug [tex]\( k \)[/tex] back into the model:
Substituting [tex]\( k \)[/tex] into the exponential decay formula:
[tex]\[ y = 320 e^{\left( \frac{\ln(0.75)}{17} t \right)} \][/tex]
Simplifying further, using an exact representation of the expression:
[tex]\[ y = 320 \left( e^{\ln(0.75)} \right)^{\frac{t}{17}} \][/tex]
Since [tex]\( e^{\ln(a)} = a \)[/tex], we get:
[tex]\[ y = 320 \left(0.75^{\frac{t}{17}}\right) \][/tex]

Therefore, the formula relating [tex]\( y \)[/tex] to [tex]\( t \)[/tex] is:
[tex]\[ y = 320 \cdot 0.75^{\frac{t}{17}} \][/tex]

### Part (b)
To find the number of bacteria 21 minutes after the beginning of the study, substitute [tex]\( t = 21 \)[/tex] into the decay model.

1. Evaluation:
[tex]\[ y = 320 \cdot 0.75^{\frac{21}{17}} \][/tex]
Using the given expression:
[tex]\[ y = 320 \left( 0.75^{\frac{21}{17}} \right) \][/tex]

2. Compute [tex]\( y \)[/tex] at [tex]\( t = 21 \)[/tex]:
[tex]\[ y = 320 e^{\left( \frac{\ln(0.75)}{17} \cdot 21 \right)} \][/tex]

The rounded number of bacteria at [tex]\( t = 21 \)[/tex] minutes is:
[tex]\[ y \approx 224 \][/tex]

### Summary

- Formula relating [tex]\( y \)[/tex] to [tex]\( t \)[/tex]:
[tex]\[ y = 320 \cdot 0.75^{\frac{t}{17}} \][/tex]

- Number of bacteria at 21 minutes:
[tex]\[ 224 \text{ bacteria} \][/tex]