Simplify the following expression:

[tex]\[ 85 \sqrt{12} \times \sqrt{18} - 3 \sqrt{8} \times \sqrt{48} \][/tex]

Then solve:

[tex]\[
\begin{array}{l}
5 \sqrt{8} + \sqrt{32} = \\
2 \sqrt{6} \times 3 \sqrt{8} = \\
\end{array}
\][/tex]



Answer :

Certainly! Let's solve each expression step by step.

1. First Expression: [tex]\(85 \sqrt{12} \times \sqrt{18} - 3 \sqrt{8} \times \sqrt{48}\)[/tex]

Break it down into two parts:
- Calculate [tex]\(85 \sqrt{12} \times \sqrt{18}\)[/tex]
- Calculate [tex]\(3 \sqrt{8} \times \sqrt{48}\)[/tex]

Then subtract the second part from the first part.

The value of this expression is 1190.4520149926245.

2. Second Expression: [tex]\(5 \sqrt{8} + \sqrt{32}\)[/tex]

Break it down into two parts:
- Calculate [tex]\(5 \sqrt{8}\)[/tex]
- Calculate [tex]\(\sqrt{32}\)[/tex]

Then add these two results together.

The value of this expression is 19.79898987322333.

3. Third Expression: [tex]\(2 \sqrt{6} \times 3 \sqrt{8}\)[/tex]

Multiply [tex]\(2 \sqrt{6}\)[/tex] by [tex]\(3 \sqrt{8}\)[/tex].

The value of this expression is 41.569219381653056.

Therefore, the detailed results for each of the given mathematical expressions are:
1. [tex]\(85 \sqrt{12} \times \sqrt{18} - 3 \sqrt{8} \times \sqrt{48} = 1190.4520149926245\)[/tex]
2. [tex]\(5 \sqrt{8} + \sqrt{32} = 19.79898987322333\)[/tex]
3. [tex]\(2 \sqrt{6} \times 3 \sqrt{8} = 41.569219381653056\)[/tex]

These results provide the exact values calculated for each expression.