Select the correct answer.

What is the solution to this equation?
[tex]\[ 3^{2z} + 12 = 39 \][/tex]

A. [tex]\(x = 9\)[/tex]
B. [tex]\(z = \frac{3}{2}\)[/tex]
C. [tex]\(x = \frac{9}{2}\)[/tex]
D. [tex]\(x = 3\)[/tex]



Answer :

To solve the equation [tex]\(3^{2z} + 12 = 39\)[/tex], we follow these steps:

1. Isolate the exponential term:
[tex]\[ 3^{2z} + 12 = 39 \][/tex]
Subtract 12 from both sides:
[tex]\[ 3^{2z} = 27 \][/tex]

2. Rewrite the equation using logarithms to solve for [tex]\(2z\)[/tex]:
To bring the exponent [tex]\(2z\)[/tex] down, we can take the natural logarithm ([tex]\(\ln\)[/tex]) of both sides:
[tex]\[ \ln(3^{2z}) = \ln(27) \][/tex]
Using the power rule of logarithms, [tex]\(\ln(a^b) = b \cdot \ln(a)\)[/tex]:
[tex]\[ 2z \cdot \ln(3) = \ln(27) \][/tex]

3. Solve for [tex]\(z\)[/tex]:
Divide both sides by [tex]\(2 \cdot \ln(3)\)[/tex]:
[tex]\[ z = \frac{\ln(27)}{2 \cdot \ln(3)} \][/tex]

4. Evaluate the expression:
We know that [tex]\( \ln(27) = \ln(3^3) = 3 \cdot \ln(3) \)[/tex]. Therefore:
[tex]\[ z = \frac{3 \cdot \ln(3)}{2 \cdot \ln(3)} = \frac{3}{2} \][/tex]

Therefore, the correct answer is [tex]\( z = \frac{3}{2} \)[/tex], which corresponds to option B.

So, the correct answer is:
B. [tex]\( z = \frac{3}{2} \)[/tex]