Let [tex]r = 0.12[/tex] be the reserve rate. Which of the following is the money multiplier?

A. [tex]10 \cdot 0.12[/tex]
B. [tex]0.12^2[/tex]
C. [tex]\frac{1}{0.12}[/tex]
D. [tex]\frac{1}{0.12^2}[/tex]



Answer :

To determine the correct money multiplier given a reserve rate [tex]\( r = 0.12 \)[/tex], we follow these steps:

1. Understanding the Money Multiplier:
The money multiplier [tex]\( m \)[/tex] is calculated based on the reserve rate. The money multiplier is the inverse of the reserve rate. Mathematically, it is represented as:
[tex]\[ m = \frac{1}{r} \][/tex]

2. Substitute the Reserve Rate:
Here, the reserve rate [tex]\( r \)[/tex] is given as 0.12. We substitute this value into the formula for the money multiplier:
[tex]\[ m = \frac{1}{0.12} \][/tex]

3. Calculate the Money Multiplier:
Performing the division, we find:
[tex]\[ \frac{1}{0.12} = 8.333333333333334 \][/tex]

4. Evaluate the Options:
Let's examine the given options to find a match:
- A. [tex]\( 10 \cdot 0.12 \)[/tex] results in [tex]\( 1.2 \)[/tex] (incorrect).
- B. [tex]\( 0.12^2 \)[/tex] results in [tex]\( 0.0144 \)[/tex] (incorrect).
- C. [tex]\(\frac{1}{0.12}\)[/tex] results in [tex]\( 8.333333333333334 \)[/tex] (correct).
- D. [tex]\(\frac{1}{0.12^2}\)[/tex] results in [tex]\( \frac{1}{0.0144} = 69.44444444444444 \)[/tex] (incorrect).

Therefore, the correct answer is C. [tex]\(\frac{1}{0.12}\)[/tex], which simplifies to [tex]\( 8.333333333333334 \)[/tex].