What is the approximate value of [tex]$x$[/tex] in the equation below?

[tex]\log _{\frac{3}{4}} 25 = 3x - 1[/tex]

A. [tex]-3.396[/tex]
B. [tex]-0.708[/tex]
C. [tex]0.304[/tex]
D. [tex]0.955[/tex]



Answer :

To solve the equation [tex]\(\log_{\frac{3}{4}} 25 = 3x - 1\)[/tex] for the value of [tex]\(x\)[/tex], follow these steps:

1. Understand the logarithmic equation:
[tex]\[ \log_{\frac{3}{4}} 25 = 3x - 1 \][/tex]

2. Calculate the logarithmic value:
We need to find the value of [tex]\(\log_{\frac{3}{4}} 25\)[/tex]. The logarithm [tex]\(\log_{\frac{3}{4}} 25\)[/tex] represents the power to which the base [tex]\(\frac{3}{4}\)[/tex] must be raised to get 25. The exact calculation will yield:
[tex]\[ \log_{\frac{3}{4}} 25 \approx -11.189 \][/tex]

3. Form the equation:
We now have:
[tex]\[ -11.189 = 3x - 1 \][/tex]

4. Solve for [tex]\(x\)[/tex]:
Rearrange the equation to isolate [tex]\(x\)[/tex]:
[tex]\[ -11.189 + 1 = 3x \][/tex]
[tex]\[ -10.189 = 3x \][/tex]
[tex]\[ x = \frac{-10.189}{3} \][/tex]
[tex]\[ x \approx -3.396 \][/tex]

5. Select the closest match from the given options:
From the list of options provided:
[tex]\[ -3.396, -0.708, 0.304, 0.955 \][/tex]
We see that the approximate value of [tex]\(x\)[/tex] calculated is [tex]\(-3.396\)[/tex], which matches the first option.

Therefore, the approximate value of [tex]\(x\)[/tex] is:
[tex]\[ \boxed{-3.396} \][/tex]