(ii) A curve [tex]$C$[/tex] has the equation [tex]$y = f(x)$[/tex].

Given:
- [tex]f^{\prime}(x) = ax^2 + b[/tex], where [tex]a[/tex] and [tex]b[/tex] are constants
- The gradient of [tex]C[/tex] at the point [tex](3,5)[/tex] is 4
- The [tex]y[/tex]-intercept of [tex]C[/tex] is -5

Find [tex]f(x)[/tex].



Answer :

Let's solve the problem step by step.

Step 1: Integrate [tex]\( f'(x) = a x^2 + b \)[/tex] to find [tex]\( f(x) \)[/tex].

Given [tex]\( f'(x) = a x^2 + b \)[/tex], we integrate with respect to [tex]\( x \)[/tex]:
[tex]\[ f(x) = \int (a x^2 + b) \, dx = \frac{a}{3} x^3 + b x + C \][/tex]
where [tex]\( C \)[/tex] is the constant of integration.

Step 2: Use the known gradient at point (3,5).

We know the gradient of [tex]\( f(x) \)[/tex] at [tex]\( x = 3 \)[/tex] is 4:
[tex]\[ f'(3) = 4 \][/tex]
Plug [tex]\( x = 3 \)[/tex] into the derivative [tex]\( f'(x) \)[/tex]:
[tex]\[ a(3^2) + b = 4 \implies 9a + b = 4 \][/tex]
From this equation, we can solve for [tex]\( a \)[/tex] in terms of [tex]\( b \)[/tex]:
[tex]\[ 9a + b = 4 \implies a = \frac{4 - b}{9} \][/tex]

Step 3: Substitute [tex]\( a \)[/tex] back into [tex]\( f(x) \)[/tex].

Replace [tex]\( a \)[/tex] in the original integral form of [tex]\( f(x) \)[/tex] to get [tex]\( f(x) \)[/tex] in terms of [tex]\( b \)[/tex] and [tex]\( C \)[/tex]:
[tex]\[ f(x) = \frac{4 - b}{27} x^3 + b x + C \][/tex]

Step 4: Use the y-intercept of [tex]\( C \)[/tex].

We know the y-intercept is -5, meaning [tex]\( f(0) = -5 \)[/tex]:
[tex]\[ f(0) = -5 \implies \frac{4 - b}{27} (0)^3 + b(0) + C = -5 \implies C = -5 \][/tex]

Step 5: Use the point (3, 5) to find [tex]\( b \)[/tex].

Substitute [tex]\( C = -5 \)[/tex] back into the equation and use the point [tex]\( (3, 5) \)[/tex]:
[tex]\[ f(3) = 5 = \frac{4 - b}{27} (3)^3 + b(3) - 5 \][/tex]
Simplify and solve for [tex]\( b \)[/tex]:
[tex]\[ 5 = \frac{4 - b}{27} \cdot 27 + 3b - 5 \][/tex]
[tex]\[ 5 = 4 - b + 3b - 5 \][/tex]
[tex]\[ 5 = 4 + 2b - 5 \][/tex]
[tex]\[ 5 = -1 + 2b \][/tex]
[tex]\[ 6 = 2b \implies b = 3 \][/tex]

Step 6: Find [tex]\( a \)[/tex].

Substitute [tex]\( b = 3 \)[/tex] back into the equation for [tex]\( a \)[/tex]:
[tex]\[ a = \frac{4 - 3}{9} = \frac{1}{9} \][/tex]

Step 7: Write the final expression for [tex]\( f(x) \)[/tex].

Substitute [tex]\( a = \frac{1}{9} \)[/tex] and [tex]\( b = 3 \)[/tex] into [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = \frac{1}{27} x^3 + 3x - 5 \][/tex]

Therefore, the equation of the curve [tex]\( C \)[/tex] is:
[tex]\[ f(x) = \frac{1}{27} x^3 + 3 x - 5 \][/tex]