Select the correct answer.

Which equation is correctly rewritten to solve for [tex]$x$[/tex]?

[tex]$-fx - g = h$[/tex]

A. [tex]$x = \frac{g - h}{-f}$[/tex]

B. [tex][tex]$x = \frac{h + g}{f}$[/tex][/tex]

C. [tex]$x = \frac{h - g}{-f}$[/tex]

D. [tex]$x = \frac{h + g}{-f}$[/tex]



Answer :

To solve the equation [tex]\(-f x - g = h\)[/tex] for [tex]\(x\)[/tex], follow these steps:

1. Isolate the term containing [tex]\(x\)[/tex]:
Add [tex]\(g\)[/tex] to both sides of the equation to move the constant term to the right side:
[tex]\[ -f x - g + g = h + g \][/tex]
Simplifying this, we get:
[tex]\[ -f x = h + g \][/tex]

2. Solve for [tex]\(x\)[/tex]:
Divide both sides of the equation by [tex]\(-f\)[/tex] to isolate [tex]\(x\)[/tex]:
[tex]\[ x = \frac{h + g}{-f} \][/tex]

So, the correct form of the equation that solves for [tex]\(x\)[/tex] is:
[tex]\[ x = \frac{h + g}{-f} \][/tex]

Therefore, the correct answer is:
D. [tex]\(x = \frac{h + g}{-f}\)[/tex]