Answered

Select the correct answer.

Which expression is equivalent to [tex]3 \sqrt{2 y^3} \cdot 7 \sqrt{18 y}[/tex], if [tex]y \ \textgreater \ 0[/tex]?

A. [tex]21 y \sqrt{20 y}[/tex]

B. [tex]21 y^2 \sqrt{6 y}[/tex]

C. [tex]63 y \sqrt{2 y}[/tex]

D. [tex]126 y^2[/tex]



Answer :

Let's solve the given expression step-by-step:

We have the expression:
[tex]\[ 3 \sqrt{2 y^3} \cdot 7 \sqrt{18 y} \][/tex]

First, simplify each square root term separately.

1. Simplify [tex]\( \sqrt{2 y^3} \)[/tex]:
[tex]\[ \sqrt{2 y^3} = \sqrt{2} \cdot \sqrt{y^3} \][/tex]
We know that [tex]\( \sqrt{y^3} = y^{1.5} \)[/tex] because [tex]\( \sqrt{y^3} = y^{3/2} \)[/tex]:
[tex]\[ \sqrt{2 y^3} = \sqrt{2} \cdot y^{3/2} \][/tex]

2. Simplify [tex]\( \sqrt{18 y} \)[/tex]:
[tex]\[ \sqrt{18 y} = \sqrt{18} \cdot \sqrt{y} \][/tex]
We know that [tex]\( 18 \)[/tex] can be factored into [tex]\( 2 \cdot 9 \)[/tex], and [tex]\( \sqrt{18} = \sqrt{2 \cdot 9} = \sqrt{2} \cdot \sqrt{9} = \sqrt{2} \cdot 3 \)[/tex]:
[tex]\[ \sqrt{18 y} = 3 \sqrt{2} \cdot \sqrt{y} = 3 \sqrt{2} \cdot y^{1/2} \][/tex]

Now, multiply the simplified square roots by their coefficients:
[tex]\[ 3 \sqrt{2} \cdot y^{3/2} \quad \text{and} \quad 7 \cdot 3 \sqrt{2} \cdot y^{1/2} \][/tex]

So, we have:
[tex]\[ 3 \sqrt{2} \cdot y^{3/2} \cdot 7 \cdot 3 \sqrt{2} \cdot y^{1/2} \][/tex]

Combine the constants together:
[tex]\[ 3 \cdot 7 \cdot 3 = 63 \][/tex]
And the square root terms:
[tex]\[ \sqrt{2} \cdot \sqrt{2} = 2 \][/tex]

Multiply these:
[tex]\[ 63 \cdot 2 = 126 \][/tex]

Combine the [tex]\( y \)[/tex]-terms:
[tex]\[ y^{3/2} \cdot y^{1/2} = y^{(3/2 + 1/2)} = y^2 \][/tex]

Putting all parts together:
[tex]\[ 126 \cdot y^2 \][/tex]

Therefore, the expression simplifies to:
[tex]\[ 126 y^2 \][/tex]

The correct answer is:
D. [tex]\( 126 y^2 \)[/tex]