Which of the following expressions is equal to [tex]$-x^2-81$[/tex]?

A. [tex]$(-x-9i)(x+9i)$[/tex]
B. [tex][tex]$(-x-9i)(x-9i)$[/tex][/tex]
C. [tex]$(x+9i)(x-9i)$[/tex]
D. [tex]$(-x+9i)(x-9i)$[/tex]



Answer :

To determine which expression is equivalent to [tex]\(-x^2 - 81\)[/tex], we need to simplify each of the given expressions and compare the results.

### Evaluation of Each Choice

Choice A: [tex]\((-x - 9i)(x + 9i)\)[/tex]

First, apply the distributive property (FOIL method):
[tex]\[ (-x - 9i)(x + 9i) = (-x)(x) + (-x)(9i) + (-9i)(x) + (-9i)(9i) \][/tex]

Simplify each term:
[tex]\[ (-x)(x) = -x^2, \quad (-x)(9i) = -9xi, \quad (-9i)(x) = -9xi, \quad (-9i)(9i) = -81i^2 \][/tex]

Combine like terms and use the fact that [tex]\(i^2 = -1\)[/tex]:
[tex]\[ -x^2 - 9xi - 9xi - 81i^2 = -x^2 - 18xi - 81(-1) = -x^2 - 18xi + 81 \][/tex]

Therefore:
[tex]\[ (-x - 9i)(x + 9i) = -x^2 + 81 \quad \Rightarrow \quad \text{not equal to } -x^2 - 81 \][/tex]

Choice B: [tex]\((-x - 9i)(x - 9i)\)[/tex]

First, apply the distributive property (FOIL method):
[tex]\[ (-x - 9i)(x - 9i) = (-x)(x) + (-x)(-9i) + (-9i)(x) + (-9i)(-9i) \][/tex]

Simplify each term:
[tex]\[ (-x)(x) = -x^2, \quad (-x)(-9i) = 9xi, \quad (-9i)(x) = -9xi, \quad (-9i)(-9i) = 81i^2 \][/tex]

Combine like terms and use the fact that [tex]\(i^2 = -1\)[/tex]:
[tex]\[ -x^2 + 9xi - 9xi + 81i^2 = -x^2 + 81(-1) = -x^2 - 81 \][/tex]

Therefore:
[tex]\[ (-x - 9i)(x - 9i) = -x^2 - 81 \quad \Rightarrow \quad \text{equal to } -x^2 - 81 \][/tex]

Choice C: [tex]\((x + 9i)(x - 9i)\)[/tex]

First, apply the distributive property (FOIL method):
[tex]\[ (x + 9i)(x - 9i) = (x)(x) + (x)(-9i) + (9i)(x) + (9i)(-9i) \][/tex]

Simplify each term:
[tex]\[ (x)(x) = x^2, \quad (x)(-9i) = -9xi, \quad (9i)(x) = 9xi, \quad (9i)(-9i) = -81i^2 \][/tex]

Combine like terms and use the fact that [tex]\(i^2 = -1\)[/tex]:
[tex]\[ x^2 - 9xi + 9xi - 81i^2 = x^2 - 81(-1) = x^2 + 81 \][/tex]

Therefore:
[tex]\[ (x + 9i)(x - 9i) = x^2 + 81 \quad \Rightarrow \quad \text{not equal to } -x^2 - 81 \][/tex]

Choice D: [tex]\((-x + 9i)(x - 9i)\)[/tex]

First, apply the distributive property (FOIL method):
[tex]\[ (-x + 9i)(x - 9i) = (-x)(x) + (-x)(-9i) + (9i)(x) + (9i)(-9i) \][/tex]

Simplify each term:
[tex]\[ (-x)(x) = -x^2, \quad (-x)(-9i) = 9xi, \quad (9i)(x) = 9xi, \quad (9i)(-9i) = -81i^2 \][/tex]

Combine like terms and use the fact that [tex]\(i^2 = -1\)[/tex]:
[tex]\[ -x^2 + 9xi + 9xi - 81i^2 = -x^2 + 18xi - 81(-1) = -x^2 + 18xi + 81 \][/tex]

Therefore:
[tex]\[ (-x + 9i)(x - 9i) = -x^2 + 81 \quad \Rightarrow \quad \text{not equal to } -x^2 - 81 \][/tex]

### Conclusion

After simplifying all the given choices, we see that only Choice B: [tex]\((-x - 9i)(x - 9i)\)[/tex] simplifies to [tex]\(-x^2 - 81\)[/tex].

Thus, the correct answer is:

[tex]\(\boxed{B}\)[/tex]