Answered

Select the correct answer.

Which expression is equivalent to [tex]$\sqrt[3]{200 k^{15}}$[/tex], if [tex]$k \neq 0$[/tex]?

A. [tex]2 k^{12} \sqrt[3]{25}[/tex]
B. [tex]2 k^5 \sqrt[3]{25}[/tex]
C. [tex]8 k^5 \sqrt[3]{25}[/tex]
D. [tex]8 k \sqrt[3]{25}[/tex]



Answer :

We are given the expression [tex]\(\sqrt[3]{200 k^{15}}\)[/tex] and we need to find an equivalent expression.

First, let's break down the components inside the cube root:

1. The number [tex]\(200\)[/tex] can be factored into its prime factors:
[tex]\[ 200 = 2^3 \times 25 \][/tex]

2. The term [tex]\(k^{15}\)[/tex] can be expressed as:
[tex]\[ k^{15} = (k^5)^3 \][/tex]

Combining these, we can rewrite the original expression [tex]\(\sqrt[3]{200 k^{15}}\)[/tex] as:
[tex]\[ \sqrt[3]{2^3 \times 25 \times (k^5)^3} \][/tex]

Now, using the property of cube roots that [tex]\(\sqrt[3]{a \times b} = \sqrt[3]{a} \times \sqrt[3]{b}\)[/tex], we can split the cube root into separate parts:
[tex]\[ \sqrt[3]{2^3 \times 25 \times (k^5)^3} = \sqrt[3]{2^3} \times \sqrt[3]{25} \times \sqrt[3]{(k^5)^3} \][/tex]

We know that:
[tex]\[ \sqrt[3]{2^3} = 2 \quad \text{and} \quad \sqrt[3]{(k^5)^3} = k^5 \][/tex]

Thus, our expression simplifies to:
[tex]\[ 2 \times k^5 \times \sqrt[3]{25} \][/tex]

Therefore, the equivalent expression is:
[tex]\[ 2 k^5 \sqrt[3]{25} \][/tex]

Looking at the given options, we see that the correct answer is:
[tex]\[ \boxed{2} \][/tex]

This corresponds to option B:
[tex]\[ 2 k^5 \sqrt[3]{25} \][/tex]