The equation [tex]$y=45x$[/tex] represents the number of miles, [tex]$y$[/tex], Mr. Miller's car can travel using [tex][tex]$x$[/tex][/tex] gallons of gas. Which data display represents a car that gets more miles per gallon than Mr. Miller's car?

A.
Gas Mileage
\begin{tabular}{|c|c|}
\hline Number of Gallons & Number of Miles \\
\hline 2 & 96 \\
\hline 4 & 192 \\
\hline 6 & 288 \\
\hline
\end{tabular}

B.
Gas Mileage
\begin{tabular}{|c|c|}
\hline Number of Gallons & Number of Miles \\
\hline 5 & 195 \\
\hline 10 & 390 \\
\hline 15 & 585 \\
\hline
\end{tabular}



Answer :

To determine which data display represents a car that gets more miles per gallon than Mr. Miller's car, we need to compare the miles per gallon values for each option with Mr. Miller's car.

1. Determine Mr. Miller's car's miles per gallon:
The equation given is [tex]\( y = 45x \)[/tex], which means Mr. Miller's car travels 45 miles per gallon.

2. Calculate the miles per gallon for Option A:
- For the first data point in Option A:
[tex]\[ \text{Miles per gallon} = \frac{\text{Number of Miles}}{\text{Number of Gallons}} = \frac{96}{2} = 48 \text{ miles per gallon} \][/tex]

3. Calculate the miles per gallon for Option B:
- For the first data point in Option B:
[tex]\[ \text{Miles per gallon} = \frac{\text{Number of Miles}}{\text{Number of Gallons}} = \frac{195}{5} = 39 \text{ miles per gallon} \][/tex]

4. Compare the calculated miles per gallon with Mr. Miller's car:
- Option A's car gets 48 miles per gallon, which is more than Mr. Miller's car that gets 45 miles per gallon.
- Option B's car gets 39 miles per gallon, which is less than Mr. Miller's car that gets 45 miles per gallon.

Since Option A's car achieves 48 miles per gallon, which is higher than the 45 miles per gallon of Mr. Miller's car, Option A represents a car that gets more miles per gallon than Mr. Miller's car.